The treatment for hormone receptor-positive breast cancer includes therapies designed to block estrogenaction. Although these therapies have changed the natural history of hormone-dependent breast cancer,many tumors exhibit ofe novo or acquired endocrine resistance. Studies with human breast cancer cell linesas well as molecular profiling of primary mammary tumors have identified molecular alterations associatedwith hormonal independence and drug resistance. One of these mechanisms is overexpression of the HER2(ErbB2) protooncogene and its signaling network. Overexpression of HER2 is the only mechanism ofantiestrogen resistance for which prospective clinical data exist. However, only <10% of hormone-dependentbreast cancer express high levels of HER2, suggesting that for the majority of hormone-receptor positivebreast cancers, mechanisms of escape from endocrine therapy remain to be discovered. In addition to thesubstantial improvements of antiestrogen therapy, assays have been developed to predict the odds ofbenefit from it. These assays do not identify the molecular alteration causally associated with treatmentfailure and tumor recurrence. More recently, cancer cell proliferation as measured by Ki67immunohistochemistry in the tumor specimen after neoadjuvant hormonal therapy has been shown tocorrelate with disease-free and overall survival. These data suggest that pharmacodynamic biomarkers ofthe cellular and molecular effects of endocrine therapy in the breast tumor, likely because they incorporatethe effects of therapy, can be used to identify cancers that are highly hormone-dependent and thus sensitiveto endocrine treatment vs. those that are cfe novo resistant and/or destined to recur faster. We hypothesizethat those tumors exhibiting a marked inhibition of cell proliferation are likely to do well on adjuvant hormonaltherapy alone whereas those that do not, are destined to an early recurrence. To 1) determine if inhibition ofHER2 function reverses resistance to endocrine therapy, and 2) discover novel mechanisms associated withresistance to endocrine therapy in hormone receptor-positive tumors without HER2 overexpression, wepropose the following aims:
Aim 1 : To determine if combined neoadjuvant therapy with the aromatase inhibitor letrozole and the HER2tyrosine kinase inhibitor lapatinib induces pathologic complete responses in hormone receptor-positivebreast cancers that overexpress HER2 and establish biomarkers predictive of response to this therapy.
Aim 2 : To determine if the post-letrozole Ki67 in hormone receptor-positive/HER2-negative tumors mirrorsthe recurrence score as measured by RT-PCR of 21 selected genes in formalin-fixed tumor tissue sectionsand to use these biomarkers to discover gene expression signatures associated with hormonal dependence.
Aim 3 : To determine the mechanisms by which loss of PTEN in hormone receptor-positive breast cancercells dysregulates phosphatidylinositol-3 kinase (PI3K) signaling and generates resistance to antiestrogens.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA098131-06
Application #
7515253
Study Section
Special Emphasis Panel (ZCA1-RPRB-M (M1))
Project Start
2008-09-11
Project End
2013-05-31
Budget Start
2008-09-11
Budget End
2009-05-31
Support Year
6
Fiscal Year
2008
Total Cost
$207,653
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Santos Guasch, Gabriela L; Beeler, J Scott; Marshall, Clayton B et al. (2018) p73 Is Required for Ovarian Follicle Development and Regulates a Gene Network Involved in Cell-to-Cell Adhesion. iScience 8:236-249
Croessmann, Sarah; Sheehan, Jonathan H; Lee, Kyung-Min et al. (2018) PIK3CA C2 Domain Deletions Hyperactivate Phosphoinositide 3-kinase (PI3K), Generate Oncogene Dependence, and Are Exquisitely Sensitive to PI3K? Inhibitors. Clin Cancer Res 24:1426-1435
Elion, David L; Cook, Rebecca S (2018) Harnessing RIG-I and intrinsic immunity in the tumor microenvironment for therapeutic cancer treatment. Oncotarget 9:29007-29017
Williams, Michelle M; Lee, Linus; Werfel, Thomas et al. (2018) Intrinsic apoptotic pathway activation increases response to anti-estrogens in luminal breast cancers. Cell Death Dis 9:21
Hyman, David M; Piha-Paul, Sarina A; Won, Helen et al. (2018) HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature 554:189-194
Luo, Na; Nixon, Mellissa J; Gonzalez-Ericsson, Paula I et al. (2018) DNA methyltransferase inhibition upregulates MHC-I to potentiate cytotoxic T lymphocyte responses in breast cancer. Nat Commun 9:248
Sudhan, Dhivya R; Schwarz, Luis J; Guerrero-Zotano, Angel et al. (2018) Extended Adjuvant Therapy with Neratinib Plus Fulvestrant Blocks ER/HER2 Crosstalk and Maintains Complete Responses of ER+/HER2+ Breast Cancers: Implications to the ExteNET Trial. Clin Cancer Res :
Werfel, Thomas A; Wang, Shan; Jackson, Meredith A et al. (2018) Selective mTORC2 Inhibitor Therapeutically Blocks Breast Cancer Cell Growth and Survival. Cancer Res 78:1845-1858
Zhao, Shilin; Li, Chung-I; Guo, Yan et al. (2018) RnaSeqSampleSize: real data based sample size estimation for RNA sequencing. BMC Bioinformatics 19:191
Williams, Michelle M; Vaught, David B; Joly, Meghan Morrison et al. (2017) ErbB3 drives mammary epithelial survival and differentiation during pregnancy and lactation. Breast Cancer Res 19:105

Showing the most recent 10 out of 341 publications