The major objective of the Biostatistics and Bioinformatics Core (Core 3) is to provide centralized biostatistics, bioinformatics, and database support for all Projects and Cores. Core 3 will provide guidance in the design and conduct of clinical trials and other experiments that arise from the ongoing research of the SPORE, facilitate prospective collection, entry, quality control, and integration of data for the basic science, pre-clinical, and clinical studies, and provide bioinformatics data analysis of high-throughput and high-dimensional genomics data. We will provide innovative and tailored statistical modeling, simulation techniques, and data analyses for the main projects, developmental research and career enhancement projects, and other cores to achieve their specific aims. We will conduct data analyses and prepare statistical reports for all experiments within all projects, ensure that the results of all projects are appropriately interpreted, and assist all project investigators in the publication of scientific results. Core 3 will also be a resource for intra- and inter-SPORE collaborations, including study design and developing databases for multi-center clinical trials.

Public Health Relevance

The Biostatistics and Bioinformatics Core provides consultation and collaboration in the design, conduct, analysis, and interpretation of research studies in this SPORE, helps them achieve their objectives and ensures scientifically valid conclusions will be drawn. Effective formulation and application of efficacy, futility and safety monitoring rules for clinical trials will offer protection to patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA100632-18
Application #
10006810
Study Section
Special Emphasis Panel (ZCA1)
Project Start
2003-08-05
Project End
2023-08-31
Budget Start
2020-09-01
Budget End
2021-08-31
Support Year
18
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Cortes, Jorge E; Tallman, Martin S; Schiller, Gary J et al. (2018) Phase 2b study of 2 dosing regimens of quizartinib monotherapy in FLT3-ITD-mutated, relapsed or refractory AML. Blood 132:598-607
Ohanian, Maro; Rozovski, Uri; Kanagal-Shamanna, Rashmi et al. (2018) MYC protein expression is an important prognostic factor in acute myeloid leukemia. Leuk Lymphoma :1-12
Boddu, P; Jorgensen, J; Kantarjian, H et al. (2018) Achievement of a negative minimal residual disease state after hypomethylating agent therapy in older patients with AML reduces the risk of relapse. Leukemia 32:241-244
Yan, Fangrong; Zhu, Huihong; Liu, Junlin et al. (2018) Design and inference for 3-stage bioequivalence testing with serial sampling data. Pharm Stat 17:458-476
Kelly, Andrew D; Madzo, Jozef; Madireddi, Priyanka et al. (2018) Demethylator phenotypes in acute myeloid leukemia. Leukemia 32:2178-2188
Levis, Mark J; Perl, Alexander E; Altman, Jessica K et al. (2018) A next-generation sequencing-based assay for minimal residual disease assessment in AML patients with FLT3-ITD mutations. Blood Adv 2:825-831
Shah, Maitri Y; Ferracin, Manuela; Pileczki, Valentina et al. (2018) Cancer-associated rs6983267 SNP and its accompanying long noncoding RNA CCAT2 induce myeloid malignancies via unique SNP-specific RNA mutations. Genome Res 28:432-447
Masarova, Lucia; Verstovsek, Srdan; Hidalgo-Lopez, Juliana E et al. (2018) A phase 2 study of ruxolitinib in combination with azacitidine in patients with myelofibrosis. Blood 132:1664-1674
Good, Charly Ryan; Panjarian, Shoghag; Kelly, Andrew D et al. (2018) TET1-Mediated Hypomethylation Activates Oncogenic Signaling in Triple-Negative Breast Cancer. Cancer Res 78:4126-4137
Choi, Sangbum; Kang, Sangwook; Huang, Xuelin (2018) Smoothed quantile regression analysis of competing risks. Biom J 60:934-946

Showing the most recent 10 out of 487 publications