The purpose of this core is to provide the following functions that will be utilized by theresearch projects and the clinical studies in the SPORE:
Specific Aim 1. To provide biostatistical collaboration for SPORE Projects, Developmental Projects andCores. This includes all aspects of design, conduct, analysis and reporting of laboratory and clinicalprotocols; including the coordination of laboratory results with patient characteristics and outcomes from theclinical studies.
Specific Aim 2. To provide consulting and statistical education to SPORE researchers.
Specific Aim 3. To provide or recommend supporting computational infrastructure. This includescollaboration with the multiple myeloma clinical research coordinators (CRC) and the data specialist at theQuality Assurance Office for Clinical Trials (QACT) on the collection of data, forms development, dataprocessing and quality assurance of clinical trials data, as well as consultation on computer databases,moving data between data bases for laboratory, animal and relevant clinical studiesSpecific Aim 4. To provide bioinformatic support for analysis of high throughput transcriptional and genomicstudies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA100707-06
Application #
7507330
Study Section
Special Emphasis Panel (ZCA1-GRB-I (M1))
Project Start
2008-07-01
Project End
2013-06-30
Budget Start
2008-07-01
Budget End
2009-08-31
Support Year
6
Fiscal Year
2008
Total Cost
$97,858
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Ye, Shuai; Lawlor, Matthew A; Rivera-Reyes, Adrian et al. (2018) YAP1-Mediated Suppression of USP31 Enhances NF?B Activity to Promote Sarcomagenesis. Cancer Res 78:2705-2720
Hunter, Zachary R; Xu, Lian; Tsakmaklis, Nickolas et al. (2018) Insights into the genomic landscape of MYD88 wild-type Waldenström macroglobulinemia. Blood Adv 2:2937-2946
Szalat, R; Samur, M K; Fulciniti, M et al. (2018) Nucleotide excision repair is a potential therapeutic target in multiple myeloma. Leukemia 32:111-119
Bolli, Niccolò; Maura, Francesco; Minvielle, Stephane et al. (2018) Genomic patterns of progression in smoldering multiple myeloma. Nat Commun 9:3363
Gullà, A; Hideshima, T; Bianchi, G et al. (2018) Protein arginine methyltransferase 5 has prognostic relevance and is a druggable target in multiple myeloma. Leukemia 32:996-1002
Mazzotti, Céline; Buisson, Laure; Maheo, Sabrina et al. (2018) Myeloma MRD by deep sequencing from circulating tumor DNA does not correlate with results obtained in the bone marrow. Blood Adv 2:2811-2813
Samur, Mehmet Kemal; Minvielle, Stephane; Gulla, Annamaria et al. (2018) Long intergenic non-coding RNAs have an independent impact on survival in multiple myeloma. Leukemia 32:2626-2635
Xu, Yan; Deng, Shuhui; Mao, Xuehan et al. (2018) Tolerance, Kinetics, and Depth of Response for Subcutaneous Versus Intravenous Administration of Bortezomib Combination in Chinese Patients With Newly Diagnosed Multiple Myeloma. Clin Lymphoma Myeloma Leuk 18:422-430
Michallet, M; Chapuis-Cellier, C; Dejoie, T et al. (2018) Heavy+light chain monitoring correlates with clinical outcome in multiple myeloma patients. Leukemia 32:376-382
Ray, A; Das, D S; Song, Y et al. (2018) Combination of a novel HDAC6 inhibitor ACY-241 and anti-PD-L1 antibody enhances anti-tumor immunity and cytotoxicity in multiple myeloma. Leukemia 32:843-846

Showing the most recent 10 out of 407 publications