The Mayo Clinic SPORE in Pancreatic Cancer Research will continue to make every effort to maximize the number of innovative and high-quality projects in the Developmental Research Program (DRP). The goal of the DRP is to support innovative, scientifically sound research projects from which findings can be translated into clinically relevant applications that will impact screening, diagnosis, and management of pancreatic cancer. Progress from Years 05 to 10 has resulted in support for 26 of 64 (41%) DRP applications. These meritorious projects have yielded important new insights about pancreatic cancer and have led to extramural funding, including contributions to the full translational research projects in this current SPORE application.
The Specific Aims of the DRP are to: (1) Encourage and solicit innovative translationally-relevant laboratory, population and clinical study proposals and support interdisciplinary collaboration in translational research in pancreatic cancer;(2) Conduct a thorough evaluation of all applications for the DRP award;(3) Evaluate and monitor progress of DRP awardees;and (4) Facilitate opportunities for extramural funding and integration into future SPORE projects. These projects will generate new hypotheses that can be tested in larger-scale research projects or clinical trials that can impact pancreatic cancer. The DRP will provide up to $50,000 (utilizing funds from both the SPORE grant and institutional resources) to 2 to 3 projects annually. There will be the possibility of a second year of support based on progress. A successfully established process will call for applications on an annual basis and to formally peer review submissions utilizing the expertise of the Scientific Advisory Committee and others as needed, including our Advocates. Criteria will be based upon scientific merit, originality, qualifications of the key personnel and interactions, and translational potential. It is the intent of the SPORE leadership to encourage and help the investigators to use the data generated by these projects to design either R01-type grants or similar extramural proposals in the next funding period.

Public Health Relevance

The Developmental Research Program is a very important resource for innovative research in pancreatic cancer. A rigorous process ensures transparency and fair review of applications. Scientific merit, originality, and potential for translation are key criteria for selecting two to three applications each year.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA102701-11A1
Application #
8738919
Study Section
Special Emphasis Panel (ZCA1-RPRB-0 (M1))
Project Start
2014-09-18
Project End
2019-08-31
Budget Start
2014-09-18
Budget End
2015-08-31
Support Year
11
Fiscal Year
2014
Total Cost
$51,468
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Chaffee, Kari G; Oberg, Ann L; McWilliams, Robert R et al. (2018) Prevalence of germ-line mutations in cancer genes among pancreatic cancer patients with a positive family history. Genet Med 20:119-127
Shroff, Rachna T; Hendifar, Andrew; McWilliams, Robert R et al. (2018) Rucaparib Monotherapy in Patients With Pancreatic Cancer and a Known Deleterious BRCA Mutation. JCO Precis Oncol 2018:
McWilliams, Robert R; Wieben, Eric D; Chaffee, Kari G et al. (2018) CDKN2A Germline Rare Coding Variants and Risk of Pancreatic Cancer in Minority Populations. Cancer Epidemiol Biomarkers Prev 27:1364-1370
Supekar, Nitin T; Lakshminarayanan, Vani; Capicciotti, Chantelle J et al. (2018) Synthesis and Immunological Evaluation of a Multicomponent Cancer Vaccine Candidate Containing a Long MUC1 Glycopeptide. Chembiochem 19:121-125
Cohen, Joshua D; Li, Lu; Wang, Yuxuan et al. (2018) Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359:926-930
Zhang, Mingfeng; Lykke-Andersen, Soren; Zhu, Bin et al. (2018) Characterising cis-regulatory variation in the transcriptome of histologically normal and tumour-derived pancreatic tissues. Gut 67:521-533
Kanamori, Karina S; de Oliveira, Guilherme C; Auxiliadora-Martins, Maria et al. (2018) Two Different Methods of Quantification of Oxidized Nicotinamide Adenine Dinucleotide (NAD+) and Reduced Nicotinamide Adenine Dinucleotide (NADH) Intracellular Levels: Enzymatic Coupled Cycling Assay and Ultra-performance Liquid Chromatography (UPLC)-Mass Bio Protoc 8:
Hu, Chunling; Hart, Steven N; Polley, Eric C et al. (2018) Association Between Inherited Germline Mutations in Cancer Predisposition Genes and Risk of Pancreatic Cancer. JAMA 319:2401-2409
Orozco, Carlos A; Martinez-Bosch, Neus; Guerrero, Pedro E et al. (2018) Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor-stroma crosstalk. Proc Natl Acad Sci U S A 115:E3769-E3778
Radecki Breitkopf, Carmen; Wolf, Susan M; Chaffee, Kari G et al. (2018) Attitudes Toward Return of Genetic Research Results to Relatives, Including After Death: Comparison of Cancer Probands, Blood Relatives, and Spouse/Partners. J Empir Res Hum Res Ethics 13:295-304

Showing the most recent 10 out of 336 publications