The Mayo Clinic Breast Cancer SPORE will make every effort to maximize the number of innovative and highquality projects in the Developmental Research Program. The goal of this Program is to support innovative, scientifically sound research projects from which findings can be translated into clinically relevant applications that will impact diagnosis and management of breast cancer. This Program will: (1) encourage and solicit innovative translational laboratory, population, and clinical study proposals; (2) encourage and support interdisciplinary collaboration in translational research in breast cancer; and (3) generate new hypotheses that can be tested in larger-scale research projects or clinical trials that can impact breast cancer. The availability of this support provides a stimulus for creativity in the research community, a vehicle for encouraging the interaction of basic scientists and translational investigators, and an opportunity for expanding the research spectrum of the SPORE by pursuing new leads based on discoveries and/or opportunities that arise. The Developmental Research Program will provide $50,000 for one year ($30,000 from SPORE funds and a matching $20,000 from institutional resources) to each of five projects. There will be the possibility of a second year of support based on progress. A process will be established to call for applications on an annual basis and to formally peer review submissions utilizing the expertise of the Internal Scientific Advisory Committee and other experienced investigators. Criteria will be based upon scientific merit, originality, qualifications of the key personnel and interactions, and translational potential. It is anticipated that support of developmental research projects will result in the generation of new hypotheses that can potentially be addressed in existing SPORE-sponsored projects, or through peer reviewed external grant support. It is the intent of the SPORE leadership to encourage and help the investigators to use the data generated by these projects to establish preclinical or clinical trials in breast cancer. In addition the SPORE leadership will work with the investigators to secure independent R01 or Program Project Grant funding before the end of the five years funding period covered by this grant.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA116201-03
Application #
7550580
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2007-09-01
Budget End
2008-08-31
Support Year
3
Fiscal Year
2007
Total Cost
$185,780
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Tu, Xinyi; Kahila, Mohamed M; Zhou, Qin et al. (2018) ATR Inhibition Is a Promising Radiosensitizing Strategy for Triple-Negative Breast Cancer. Mol Cancer Ther 17:2462-2472
Athreya, Arjun P; Gaglio, Alan J; Cairns, Junmei et al. (2018) Machine Learning Helps Identify New Drug Mechanisms in Triple-Negative Breast Cancer. IEEE Trans Nanobioscience 17:251-259
Wiese, Elizabeth K; Hitosugi, Taro (2018) Tyrosine Kinase Signaling in Cancer Metabolism: PKM2 Paradox in the Warburg Effect. Front Cell Dev Biol 6:79
Frank, Ryan D; Winham, Stacey J; Vierkant, Robert A et al. (2018) Evaluation of 2 breast cancer risk models in a benign breast disease cohort. Cancer 124:3319-3328
Degnim, Amy C; Winham, Stacey J; Frank, Ryan D et al. (2018) Model for Predicting Breast Cancer Risk in Women With Atypical Hyperplasia. J Clin Oncol 36:1840-1846
Ohmine, Seiga; Salisbury, Jeffrey L; Ingle, James et al. (2018) Aurora-A overexpression is linked to development of aggressive teratomas derived from human iPS cells. Oncol Rep 39:1725-1730
Kourtidis, Antonis; Anastasiadis, Panos Z (2018) Close encounters of the RNAi kind: the silencing life of the adherens junctions. Curr Opin Cell Biol 54:30-36
Leon-Ferre, Roberto A; Polley, Mei-Yin; Liu, Heshan et al. (2018) Impact of histopathology, tumor-infiltrating lymphocytes, and adjuvant chemotherapy on prognosis of triple-negative breast cancer. Breast Cancer Res Treat 167:89-99
Ho, Ming-Fen; Lummertz da Rocha, Edroaldo; Zhang, Cheng et al. (2018) TCL1A, a Novel Transcription Factor and a Coregulator of Nuclear Factor ?B p65: Single Nucleotide Polymorphism and Estrogen Dependence. J Pharmacol Exp Ther 365:700-710
Horne, Hisani N; Oh, Hannah; Sherman, Mark E et al. (2018) E-cadherin breast tumor expression, risk factors and survival: Pooled analysis of 5,933 cases from 12 studies in the Breast Cancer Association Consortium. Sci Rep 8:6574

Showing the most recent 10 out of 473 publications