Tamoxifen (TAM) continues to be an important drug for the treatment of estrogen receptor positive (ER+) breast cancer. We have demonstrated that endoxifen, a potent metabolite resulting in part from Cytochrome P450 2D6 (CYP2D6) metabolism, is critical for TAM's antiproliferative effects. Our observation that reductions in CYP2D6 activity were associated with a higher risk of recurrence in TAM-treated breast cancer led us to focus our studies on endoxifen, providing the preliminary data for this proposal. In tumor bearing animals, endoxifen is superior to TAM. Furthermore, our in vitro data indicate that endoxifen can overcome TAM resistance associated with Human Epidermal growth factor Receptor 2 (HER2) expression because endoxifen does not stimulate ER/HER2 cross-talk as TAM does. We presented these data to NCI and they decided to proceed with endoxifen drug development, including production of clinical grade endoxifen hydrochloride and preclinical toxicology/pharmacology for IND submission. Our preliminary data indicate that the following questions should be addressed: 1) What are the metabolic pathways responsible for elimination of endoxifen, and are endoxifen-related toxicities similar to TAM (e.g. uterine stimulation)? 2) Does endoxifen have in vivo anti-tumor activity similar or greater than aromatase inhibitors (Al's) and does endoxifen exhibit anti-tumor activity in cells resistant to TAM or Al's? 3) In humans, can we identify a tolerable endoxifen dose and what is its toxicity profile? and, 4) Is this tolerable dose of endoxifen biologically relevant, as assessed by reductions in proliferation (Ki-67) and growth factor signaling in vivo, as well as clinical responses? To address these questions, we have proposed the following aims.
Aim 1 : to further characterize the pharmacokinetics, metabolism and toxicology of endoxifen;
Aim 2 : to study endoxifen antitumor activity and its effects on cell signaling in a murine xenograft model in comparison to TAM and letrozole and to describe the anti-tumor activity of endoxifen in TAM and letrozole resistant tumors;
and Aim 3 : to conduct a phase I study of endoxifen in humans to determine the maximum tolerated dose (MTD), and describe its toxicity profile. Following this determination, we will enroll additional patients to explore 2 different doses of endoxifen: a) the MTD and b) the endoxifen dose associated with steady state concentrations of 1 pM. At these doses, we will examine the impact of endoxifen on uterine thickness, frequency and severity of hot flashes, and perform paired tumor biopsies to determine endoxifen's effect on proteins important in growth factor signaling and proliferation.

Public Health Relevance

This project is based on observations that endoxifen provides superior in vivo anti-tumor activity compared to TAM and inhibits the growth of HER2 expressing, ER positive breast cancer. In summary, endoxifen could be a superior alternative hormonal therapy for the treatment of both pre- and postmenopausal breast cancer, regardless of HER2 status.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA116201-10
Application #
8920021
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2015-09-01
Budget End
2016-08-31
Support Year
10
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Tu, Xinyi; Kahila, Mohamed M; Zhou, Qin et al. (2018) ATR Inhibition Is a Promising Radiosensitizing Strategy for Triple-Negative Breast Cancer. Mol Cancer Ther 17:2462-2472
Athreya, Arjun P; Gaglio, Alan J; Cairns, Junmei et al. (2018) Machine Learning Helps Identify New Drug Mechanisms in Triple-Negative Breast Cancer. IEEE Trans Nanobioscience 17:251-259
Wiese, Elizabeth K; Hitosugi, Taro (2018) Tyrosine Kinase Signaling in Cancer Metabolism: PKM2 Paradox in the Warburg Effect. Front Cell Dev Biol 6:79
Frank, Ryan D; Winham, Stacey J; Vierkant, Robert A et al. (2018) Evaluation of 2 breast cancer risk models in a benign breast disease cohort. Cancer 124:3319-3328
Degnim, Amy C; Winham, Stacey J; Frank, Ryan D et al. (2018) Model for Predicting Breast Cancer Risk in Women With Atypical Hyperplasia. J Clin Oncol 36:1840-1846
Ohmine, Seiga; Salisbury, Jeffrey L; Ingle, James et al. (2018) Aurora-A overexpression is linked to development of aggressive teratomas derived from human iPS cells. Oncol Rep 39:1725-1730
Kourtidis, Antonis; Anastasiadis, Panos Z (2018) Close encounters of the RNAi kind: the silencing life of the adherens junctions. Curr Opin Cell Biol 54:30-36
Leon-Ferre, Roberto A; Polley, Mei-Yin; Liu, Heshan et al. (2018) Impact of histopathology, tumor-infiltrating lymphocytes, and adjuvant chemotherapy on prognosis of triple-negative breast cancer. Breast Cancer Res Treat 167:89-99
Ho, Ming-Fen; Lummertz da Rocha, Edroaldo; Zhang, Cheng et al. (2018) TCL1A, a Novel Transcription Factor and a Coregulator of Nuclear Factor ?B p65: Single Nucleotide Polymorphism and Estrogen Dependence. J Pharmacol Exp Ther 365:700-710
Horne, Hisani N; Oh, Hannah; Sherman, Mark E et al. (2018) E-cadherin breast tumor expression, risk factors and survival: Pooled analysis of 5,933 cases from 12 studies in the Breast Cancer Association Consortium. Sci Rep 8:6574

Showing the most recent 10 out of 473 publications