This second renewal application of the Mayo Clinic Breast Cancer SPORE is being submitted with the vision that the burden of breast cancer can be reduced through the performance of innovative translational research addressing issues of high significance for women. The science of the SPORE includes four translational research projects. Project 1: ?Cancer risks for mutations in breast cancer predisposition genes? focuses on non-BRCA1/BRCA2 genes included in ?panel based? tests. Using the PROMPT registry, the investigators will define the penetrance of breast cancers associated with inactivating mutations, the clinical relevance of variants of uncertain significance, and pathological ?phenotype? of these mutations. Project 2: ?Therapeutic targeting of ER? in triple negative breast cancer (TNBC)? is based on Mayo investigator data that ER?, when expressed in TNBC, is prognostic, and that ER? agonists suppress proliferation through the TGF? pathway. This project culminates in a phase II study of estradiol in ER?+TNBC within the Translational Breast Cancer Research Symposium. Project 3: ?Measles virus based immunovirotherapy in the treatment of metastatic breast cancer? is based on pioneering work of Mayo investigators to develop a measles virus (MV) that expresses an immunostimulatory transgene (MV-NAP), and the synergistic antitumor activity of MV-NAP with PD-1 blockade. This project includes a MV-NAP phase I study, and development of additional preclinical data that will inform the clinical trial of the combination of MV-NAP and PD-1 blockade. Project 4: ?Pharmacogenomics of aromatase inhibitors (AI) in early stage postmenopausal breast cancer? is based upon the importance of estrogen levels in AI-treated women. The investigators plan secondary analyses of adjuvant AI trials to determine whether inadequate estrogen suppression is associated with cancer recurrence, followed by a genome-wide analysis to identify genetic variants associated with the ?optimal? estrogen threshold and then prospective validation in a clinical study. These research projects are supported by three highly interactive cores: Core A: Administrative Core, Core B: Biospecimen and Pathology Core, and Core C: Biostatistics, Bioinformatics, and Patient Registry Core. A Developmental Research Program will continue to identify and develop research projects that hold the greatest promise to advance to full SPORE projects, and a Career Enhancement Program will continue to identify and support faculty investigators in breast cancer translational research that have the greatest potential to become future SPORE leaders. The investigators, cores, and the research programs in the SPORE are all integrated in the Mayo Clinic Cancer Center. Collectively, our SPORE will make discoveries and translate them into the clinic for the benefit of women with, or at risk of breast cancer.

Public Health Relevance

The Mayo Clinic Breast Cancer SPORE addresses significant problems relating to breast cancer with the goal of reducing morbidity and mortality from the disease. This will be accomplished through projects focusing on breast cancer risk, novel ways to target and treat chemotherapy-resistant disease, and pharmacogenomics of the host genome in women receiving adjuvant aromatase inhibitors. The proposed research addresses vitally important issues to an enormous number of women both with, and at risk of, developing breast cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA116201-13
Application #
9543990
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Courtney, Joyann
Project Start
2005-09-22
Project End
2021-08-31
Budget Start
2018-09-01
Budget End
2019-08-31
Support Year
13
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Wang, Liewei; Ingle, James; Weinshilboum, Richard (2018) Pharmacogenomic Discovery to Function and Mechanism: Breast Cancer as a Case Study. Clin Pharmacol Ther 103:243-252
Augusto, Bianca M; Lake, Paige; Scherr, Courtney L et al. (2018) From the laboratory to the clinic: sharing BRCA VUS reclassification tools with practicing genetics professionals. J Community Genet 9:209-215
Tu, Xinyi; Kahila, Mohamed M; Zhou, Qin et al. (2018) ATR Inhibition Is a Promising Radiosensitizing Strategy for Triple-Negative Breast Cancer. Mol Cancer Ther 17:2462-2472
Athreya, Arjun P; Gaglio, Alan J; Cairns, Junmei et al. (2018) Machine Learning Helps Identify New Drug Mechanisms in Triple-Negative Breast Cancer. IEEE Trans Nanobioscience 17:251-259
Wiese, Elizabeth K; Hitosugi, Taro (2018) Tyrosine Kinase Signaling in Cancer Metabolism: PKM2 Paradox in the Warburg Effect. Front Cell Dev Biol 6:79
Frank, Ryan D; Winham, Stacey J; Vierkant, Robert A et al. (2018) Evaluation of 2 breast cancer risk models in a benign breast disease cohort. Cancer 124:3319-3328
Degnim, Amy C; Winham, Stacey J; Frank, Ryan D et al. (2018) Model for Predicting Breast Cancer Risk in Women With Atypical Hyperplasia. J Clin Oncol 36:1840-1846
Ohmine, Seiga; Salisbury, Jeffrey L; Ingle, James et al. (2018) Aurora-A overexpression is linked to development of aggressive teratomas derived from human iPS cells. Oncol Rep 39:1725-1730
Kourtidis, Antonis; Anastasiadis, Panos Z (2018) Close encounters of the RNAi kind: the silencing life of the adherens junctions. Curr Opin Cell Biol 54:30-36
Leon-Ferre, Roberto A; Polley, Mei-Yin; Liu, Heshan et al. (2018) Impact of histopathology, tumor-infiltrating lymphocytes, and adjuvant chemotherapy on prognosis of triple-negative breast cancer. Breast Cancer Res Treat 167:89-99

Showing the most recent 10 out of 473 publications