Patients with primary refractory or relapsed T-cell lymphoma typically have a poor prognosis and limited options for effective targeted therapy. This contrasts with the clinical success of using CD19-specific chimeric antigen receptors (CARs) in immunotherapies for B-cell malignancies. Thus, to begin to achieve the long- term goal of devising a CAR-T cell platform that can be safely and effectively applied in patients with T-cell lymphoma, new Project 2 has selected CD5 as a novel target antigen for CAR-transduced cells. This common surface marker of normal T cells is also expressed by an estimated 85% of T-cell malignancies and functions as a transmembrane inhibitory receptor that attenuates signaling from the antigen receptor of T cells and a subset of B cells. Importantly, CD5-specific CAR-T cell fratricide (self-killing) is limited in our experimental model, allowing the CAR-modified cells to expand normally, after which they display potent and selective cytotoxicity against malignant T cells. Nonetheless, we reasoned that a second target antigen might be helpful, as antigen loss during treatment is a major obstacle to truly successful therapy, in patients receiving CD19-specific CAR-T cells, for example. CD7 was judged the best candidate as it is expressed at a high level on >90% of T-lymphoblastic lymphomas and >60% of mature lymphomas including those lacking CD5. Although in preliminary studies CD7-specific CARs showed strong activity against CD7+ target cells, the transduced T cells did not rapidly downregulate CD7, leading to enhanced fratricide that abrogated further expansion. This pitfall was eliminated by targeted depletion of the antigen in the CAR-modified T cells, a step that did not compromise either expansion or antitumor activity. Given these positive findings, we hypothesize that CD5-specific CAR-T cells can be safely used to target CD5+ T-cell lymphomas and induce complete remissions, and that CD7- cells will continue to expand and function in even in the presence of CD7-directed CARs by T cells. We propose to test each strategy in the following specific aims.
Aim 1 : Manufacture the GMP-grade vector and develop the SOPs needed for a clinical trial of CD5-specific CAR-T cells in T-cell lymphoma, and obtain all necessary local and federal regulatory approval.
Aim 2 : Conduct and evaluate a clinical trial using CD5 CAR-T cells to induce remissions in individuals with residual T-cell lymphoma who would then become eligible for allogeneic stem cell transplant.
Aim 3 : Express the CD7-specific CAR on CD7- effector T cells as a means to increase the range of targetable tumors and overcome CD5 antigen escape. Our proposed studies of CD5-specific CARs and the preclinical development of a CD7-specific CAR will do much to substantiate and advance our CAR-based platform for the treatment of T-cell malignancies and would provide a scientific basis for further optimization.

Public Health Relevance

The success that has marked the use of immune-based therapies for B-cell malignancies has not yet extended to lymphomas of T-cell origin. The research proposed here seeks to narrow that gap by developing and testing novel strategies to eliminate malignant T cells that express the CD5 or CD7 target antigen, or both.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Baylor College of Medicine
United States
Zip Code
Bajgain, Pradip; Tawinwung, Supannikar; D'Elia, Lindsey et al. (2018) CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation. J Immunother Cancer 6:34
McLaughlin, Lauren P; Rouce, Rayne; Gottschalk, Stephen et al. (2018) EBV/LMP-specific T cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation. Blood 132:2351-2361
McClain, Kenneth L; Picarsic, Jennifer; Chakraborty, Rikhia et al. (2018) CNS Langerhans cell histiocytosis: Common hematopoietic origin for LCH-associated neurodegeneration and mass lesions. Cancer 124:2607-2620
Gomes-Silva, Diogo; Ramos, Carlos A (2018) Cancer Immunotherapy Using CAR-T Cells: From the Research Bench to the Assembly Line. Biotechnol J 13:
Brunetti, Lorenzo; Gundry, Michael C; Kitano, Ayumi et al. (2018) Highly Efficient Gene Disruption of Murine and Human Hematopoietic Progenitor Cells by CRISPR/Cas9. J Vis Exp :
Xiong, Wei; Chen, Yuhui; Kang, Xi et al. (2018) Immunological Synapse Predicts Effectiveness of Chimeric Antigen Receptor Cells. Mol Ther 26:963-975
Heslop, Helen E; Brenner, Malcolm K (2018) Seek and You Will Not Find: Ending the Hunt for Replication-Competent Retroviruses during Human Gene Therapy. Mol Ther 26:1-2
Hogstad, Brandon; Berres, Marie-Luise; Chakraborty, Rikhia et al. (2018) RAF/MEK/extracellular signal-related kinase pathway suppresses dendritic cell migration and traps dendritic cells in Langerhans cell histiocytosis lesions. J Exp Med 215:319-336
Mamonkin, Maksim; Mukherjee, Malini; Srinivasan, Madhuwanti et al. (2018) Reversible Transgene Expression Reduces Fratricide and Permits 4-1BB Costimulation of CAR T Cells Directed to T-cell Malignancies. Cancer Immunol Res 6:47-58
Velasquez, Mireya Paulina; Bonifant, Challice L; Gottschalk, Stephen (2018) Redirecting T cells to hematological malignancies with bispecific antibodies. Blood 131:30-38

Showing the most recent 10 out of 270 publications