PROJECT 2 Despite unprecedented successes in many tumor types, molecular targeted therapeutics focused on targeting activated/amplified oncogenes have not had a meaningful clinical impact on patients with the incurable brain tumor glioblastoma multiforme (GBM). In this proposal we take a radically different approach to targeted therapeutics by exploiting genomic deletions, rather than mutant oncogenes, as points of selective vulnerability. Deletions create attractive therapeutic opportunities as they are usually homogenously distributed, persist during tumor recurrence, and most importantly, can expose pharmacologically targetable vulnerabilities by collaterally deleting nearby redundant metabolic housekeeping genes. We explored this concept by utilizing an unbiased chemical biology approach to identify pharmacologically targetable vulnerabilities exposed by passenger deletions. We found that inhibitors of mitochondrial oxidative phosphorylation (OxPhos) are selectively toxic to glioma cells that contained collateral homozygous deletions in the glycolytic gene ENO1. We hypothesized that the basis for this selective vulnerability is glycolysis-deficiency: ENO1-deleted glioma cells are unable to upregulate glycolysis in the face of OxPhos inhibition, a compensatory response in normal cells (Pasteur effect). A corollary of this hypothesis is that other deletions that cause glycolysis deficiency also sensitize to OxPhos inhibitors. Tool compound OxPhos inhibitors have been extensively used in in vitro studies, but are not drug-like and have poor pharmacology. MD Anderson?s Institute of Applied Cancer Science (IACS) developed a highly potent and specific OxPhos inhibitor, IACS-010759, with nM affinity for mitochondrial complex I, which readily passes the blood brain barrier and is endowed with superb pharmacological properties. In preliminary data we demonstrated that IACS-010759 destroys glycolysis-deficient glioma cells in culture and eradicates intracranial xenografts. Preliminary data indicate that the hypoxia PET probe 18F-fluoroazomycin-arabinoside (18F-FAZA) can be used as a non-invasive in vivo read-out for OxPhos inhibition (target-engagement marker for IACS- 010759), because mitochondrial oxygen consumption is a major driver of tumor-hypoxia. Based on these exceptionally encouraging pre-clinical results, we will conduct a trial of IACS-010759 on GBM patients with 18F- FAZA as a target engagement marker. The goal of this proposal is to support this trial by: 1) pre-clinically validating glycolytic-deficiency as a responder hypothesis and identifying other deletions which confer sensitivity to IACS-010759 by this mechanism, 2) validating 18F-FAZA as a non-invasive read-out for OxPhos inhibition and as a predictor of drug-response in glycolytically deficient tumors, and 3) determining target engagement (OxPhos inhibition) by 18F-FAZA and biochemical response to IACS-010759 in patients with GBMs. This proposal stands to be the first example of precision medicine for the treatment of GBMs and provides clinical validation of collateral deletions as targetable phenomena.

Public Health Relevance

PROJECT 2 Precision medicine has proved a disappointment for the treatment of glioblastoma multiforme (GBM), a deadly form of brain cancer that remains all but invariably fatal. Rather than iterating past approaches targeting amplified or mutated oncogenes, Project 2 will pioneer a new approach to precision medicine, utilizing metabolic weaknesses exposed by genomic deletions as points of vulnerability. Exceptionally encouraging pre-clinical data showing eradication of intracranial xenografted tumors, underlie an upcoming trial of a novel mitochondrial complex I inhibitor, IACS-010759, for the treatment of GBM with genomic deletions in glycolysis genes, and using the PET imaging agent 18F-FAZA as a target engagement marker.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA127001-12
Application #
10005139
Study Section
Special Emphasis Panel (ZCA1)
Project Start
2008-09-01
Project End
Budget Start
2020-09-01
Budget End
2021-08-31
Support Year
12
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Zinn, Pascal O; Singh, Sanjay K; Kotrotsou, Aikaterini et al. (2018) A Coclinical Radiogenomic Validation Study: Conserved Magnetic Resonance Radiomic Appearance of Periostin-Expressing Glioblastoma in Patients and Xenograft Models. Clin Cancer Res 24:6288-6299
Shah, Maitri Y; Ferracin, Manuela; Pileczki, Valentina et al. (2018) Cancer-associated rs6983267 SNP and its accompanying long noncoding RNA CCAT2 induce myeloid malignancies via unique SNP-specific RNA mutations. Genome Res 28:432-447
Mostovenko, Ekaterina; Végvári, Ákos; Rezeli, Melinda et al. (2018) Large Scale Identification of Variant Proteins in Glioma Stem Cells. ACS Chem Neurosci 9:73-79
Chen, Zhihua; Morales, John E; Guerrero, Paola A et al. (2018) PTPN12/PTP-PEST Regulates Phosphorylation-Dependent Ubiquitination and Stability of Focal Adhesion Substrates in Invasive Glioblastoma Cells. Cancer Res 78:3809-3822
Wang, Yugang; Xia, Yan; Lu, Zhimin (2018) Metabolic features of cancer cells. Cancer Commun (Lond) 38:65
Noh, Hyangsoon; Zhao, Qingnan; Yan, Jun et al. (2018) Cell surface vimentin-targeted monoclonal antibody 86C increases sensitivity to temozolomide in glioma stem cells. Cancer Lett 433:176-185
Lee, Jong-Ho; Liu, Rui; Li, Jing et al. (2018) EGFR-Phosphorylated Platelet Isoform of Phosphofructokinase 1 Promotes PI3K Activation. Mol Cell 70:197-210.e7
Lang, Frederick F; Conrad, Charles; Gomez-Manzano, Candelaria et al. (2018) Phase I Study of DNX-2401 (Delta-24-RGD) Oncolytic Adenovirus: Replication and Immunotherapeutic Effects in Recurrent Malignant Glioma. J Clin Oncol 36:1419-1427
Wang, Qianghu; Hu, Baoli; Hu, Xin et al. (2018) Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell 33:152
Dong, Jianwen; Park, Soon Young; Nguyen, Nghi et al. (2018) The polo-like kinase 1 inhibitor volasertib synergistically increases radiation efficacy in glioma stem cells. Oncotarget 9:10497-10509

Showing the most recent 10 out of 232 publications