Mutations in the KRAS oncogene occur in 40% of colorectal cancers (CRC), and despite extensive investigation, KRAS mutated CRCs remain resistant to available targeted therapy strategies. Mutant KRAS has been linked to activation of multiple signaling pathways that promote cancer growth and survival including the MEK-ERK, PI3K and NF-?B pathways. Suppressing critical downstream signaling pathways, either alone or in combination, have evolved as promising treatment strategies. This proposal consists of innovative translational laboratory and clinical studies that focus on developing novel strategies to treat KRAS mutant CRCs. These investigations have already begun to yield strategies that will be assessed in clinical trials in this proposal. Our overarching aim is to substantively advance the treatment of KRAS mutant CRCs in this funding period. We have conducted comprehensive signaling studies, genetic screens, and drug screens to identify and validate genes downstream from KRAS whose expression is essential to the growth and survival of KRAS mutant cancers. Our analyses of 1000 cell lines treated with >200 drugs revealed that MEK inhibitors are the most effective class of agents against KRAS mutant CRC cell lines. However, single agent MEK inhibition appears minimally effective in clinical trial;as such we will develop novel combination strategies that utilize MEK inhibitors as a backbone for KRAS mutant CRC. We recently discovered that combining an IGF-IR inhibitor, which has minimal activity as a single-agent, with a MEK inhibitor is highly effective in KRAS mutant CRC cell lines in vitro and in vivo, leading to the development of a soon to open phase l/II clinical trial of this combination. To discover additional combinations, we developed an innovative pooled shRNA screen to identify MEK inhibitor-based combinations for KRAS mutant CRCs. One gene identified in the screen was BCL-XL, and initial studies demonstrate that inactivation of BCL-XL potently synergizes with MEK inhibitors both in vitro and in vivo, which we will further explore in the laboratory and in planned clinical trials. Finally, we will build on our preliminary data demonstrating that Tank Binding Kinase (TBK1) activity is required for KRAS mutant cell survival. We will examine combined TBK1 inhibitors alone and combined with MEK inhibitors. The studies in this proposal will span cell lines, genetically engineered mouse models and clinical trials to identify novel therapeutic strategies for the treatment of KRS mutant CRCs.

Public Health Relevance

While treatment options have expanded for patients in the past decade and median survival is 2 years, metastatic colorectal cancer (CRC) is largely not curable and there are wide range of outcomes experienced by patients with metastatic CRC. It is clear that differences in outcomes are partly due to different molecular make-ups of tumors. Up to 40% of patients with metastatic CRC have a mutation of a particular gene, KRAS. The goal of this project is to understand more about this group of CRC and find new therapies for these patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA127003-06A1
Application #
8485717
Study Section
Special Emphasis Panel (ZCA1-RPRB-M (J1))
Project Start
2007-04-01
Project End
2018-06-30
Budget Start
2013-09-23
Budget End
2014-06-30
Support Year
6
Fiscal Year
2013
Total Cost
$246,377
Indirect Cost
$57,050
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Corcoran, Ryan B; André, Thierry; Atreya, Chloe E et al. (2018) Combined BRAF, EGFR, and MEK Inhibition in Patients with BRAFV600E-Mutant Colorectal Cancer. Cancer Discov 8:428-443
Song, Mingyang; Wu, Kana; Meyerhardt, Jeffrey A et al. (2018) Fiber Intake and Survival After Colorectal Cancer Diagnosis. JAMA Oncol 4:71-79
Babic, A; Schnure, N; Neupane, N P et al. (2018) Plasma inflammatory cytokines and survival of pancreatic cancer patients. Clin Transl Gastroenterol 9:145
Lopes-Ramos, Camila M; Kuijjer, Marieke L; Ogino, Shuji et al. (2018) Gene Regulatory Network Analysis Identifies Sex-Linked Differences in Colon Cancer Drug Metabolism. Cancer Res 78:5538-5547
Van Blarigan, Erin L; Ou, Fang-Shu; Niedzwiecki, Donna et al. (2018) Dietary Fat Intake after Colon Cancer Diagnosis in Relation to Cancer Recurrence and Survival: CALGB 89803 (Alliance). Cancer Epidemiol Biomarkers Prev 27:1227-1230
Patra, Krushna C; Kato, Yasutaka; Mizukami, Yusuke et al. (2018) Mutant GNAS drives pancreatic tumourigenesis by inducing PKA-mediated SIK suppression and reprogramming lipid metabolism. Nat Cell Biol 20:811-822
Katona, Bryson W; Yurgelun, Matthew B; Garber, Judy E et al. (2018) A counseling framework for moderate-penetrance colorectal cancer susceptibility genes. Genet Med 20:1324-1327
Jeon, Jihyoun; Du, Mengmeng; Schoen, Robert E et al. (2018) Determining Risk of Colorectal Cancer and Starting Age of Screening Based on Lifestyle, Environmental, and Genetic Factors. Gastroenterology 154:2152-2164.e19
Aguirre, Andrew J (2018) Refining Classification of Pancreatic Cancer Subtypes to Improve Clinical Care. Gastroenterology 155:1689-1691
Kosumi, Keisuke; Hamada, Tsuyoshi; Koh, Hideo et al. (2018) The Amount of Bifidobacterium Genus in Colorectal Carcinoma Tissue in Relation to Tumor Characteristics and Clinical Outcome. Am J Pathol 188:2839-2852

Showing the most recent 10 out of 590 publications