Recent studies in our laboratory and others demonstrate that the CDK5 gene or its coactivators is amplified in a majority of human pancreatic cancers, expressed in all pancreatic cancer cell lines tested and that CDK5 activity increases as a consequence of the action of mutant k-Ras, which in turn enhaces pancreatic cancer cell growth, invasion and metastasis. We present evidence that the inhibition of CDK5 with a 3, 5- disubstituted pyrazole significantly reduces tumor size, metastasis, and vascularization of pancreatic tumors growing as xenografts in nude mice. We propose to study the effects of CDK5 inhibition on pancreatic adenocarcinoma progression in two distinct mouse models that recapitulate the human disease as it progresses from pancreatitis to PanIN lesions and from PanIN formation through metastasis. This study will focus on inhibiting CDK5 alone during early disease development and evaluate the therapeutic capacity of inhibiting CDK5 in later disease progression, using the inhibitor and Gemcitabine-Abraxane. A second benefit of inhibiting CDK5 is that it reduces pain, given its role in nociceptive signaling. Consequently, we will also undertake preclinical studies to determine if CDK5 inhibition blocks pain associated with pancreatitis and tumor growth. We will also undertake a Phase I human clinical trials that evaluate the clinical utility of inhibiting CDK5 in advanced pancreatic cancer patients that have failed other therapy options. In the longer term these studies may enable Phase II clinical trials for treateing pancreatitis and pancreatic cancer. We will also undertake parallel drug design studies to develop next-generation molecules that improve targeting of CDK5 in pancreatic cancer patients.

Public Health Relevance

The research proposed in this project will explore the capacity of a new class of molecules that inhibit the activity of CDK5 in pancreatic cancer. These inhibitors have the potential to inhibit disease progression in premalignant and malignant lesions, and tumor associated pain. If successful these inhibitors will benefit every type of pancreatic cancer patient including those that have failed other therapies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA127297-06A1
Application #
8738888
Study Section
Special Emphasis Panel (ZCA1-RPRB-0 (M1))
Project Start
2008-09-05
Project End
2019-08-31
Budget Start
2014-09-23
Budget End
2015-08-31
Support Year
6
Fiscal Year
2014
Total Cost
$364,128
Indirect Cost
$122,183
Name
University of Nebraska Medical Center
Department
Type
DUNS #
168559177
City
Omaha
State
NE
Country
United States
Zip Code
68198
Roy, Sohini; Bag, Arup K; Dutta, Samikshan et al. (2018) Macrophage-Derived Neuropilin-2 Exhibits Novel Tumor-Promoting Functions. Cancer Res 78:5600-5617
Hall, Bradley R; Cannon, Andrew; Atri, Pranita et al. (2018) Advanced pancreatic cancer: a meta-analysis of clinical trials over thirty years. Oncotarget 9:19396-19405
Banerjee, Kasturi; Kumar, Sushil; Ross, Kathleen A et al. (2018) Emerging trends in the immunotherapy of pancreatic cancer. Cancer Lett 417:35-46
Wiest, Edwin J; Smith, Heather Jensen; Hollingsworth, Michael A (2018) Met receptor inhibitor SU11274 localizes in the endoplasmic reticulum. Biochem Biophys Res Commun 501:858-862
Chugh, Seema; Barkeer, Srikanth; Rachagani, Satyanarayana et al. (2018) Disruption of C1galt1 Gene Promotes Development and Metastasis of Pancreatic Adenocarcinomas in Mice. Gastroenterology 155:1608-1624
Jahan, Rahat; Macha, Muzafar A; Rachagani, Satyanarayana et al. (2018) Axed MUC4 (MUC4/X) aggravates pancreatic malignant phenotype by activating integrin-?1/FAK/ERK pathway. Biochim Biophys Acta Mol Basis Dis 1864:2538-2549
Qazi, Asif Khurshid; Siddiqui, Jawed A; Jahan, Rahat et al. (2018) Emerging therapeutic potential of graviola and its constituents in cancers. Carcinogenesis 39:522-533
Tiriac, Hervé; Belleau, Pascal; Engle, Dannielle D et al. (2018) Organoid Profiling Identifies Common Responders to Chemotherapy in Pancreatic Cancer. Cancer Discov 8:1112-1129
Qi, Bowen; Crawford, Ayrianne J; Wojtynek, Nicholas E et al. (2018) Indocyanine green loaded hyaluronan-derived nanoparticles for fluorescence-enhanced surgical imaging of pancreatic cancer. Nanomedicine 14:769-780
Goodwin, Justin; Choi, Hyunsung; Hsieh, Meng-Hsiung et al. (2018) Targeting Hypoxia-Inducible Factor-1?/Pyruvate Dehydrogenase Kinase 1 Axis by Dichloroacetate Suppresses Bleomycin-induced Pulmonary Fibrosis. Am J Respir Cell Mol Biol 58:216-231

Showing the most recent 10 out of 191 publications