The purpose of the Biostatistics Core is to provide professional expertise in statistics for all projects, investigators and participants of In Vivo Cellular and Molecular Imaging Center at Vanderbilt University. Functions provided by this core include development of experimental designs, data quality control, statistical analysis and interpretation of findings, and collaboration on presentation of results. To achieve these functions, the core director and core biostatisticians are constantly available to investigators, and are in regular contact with the project and pilot project leaders. The primary objectives of the Biostatistics Core are: 1. To provide study design and review all laboratory, and animal studies including feasibility assessment, power analysis and sample size estimation. 2. To collaborate in projects data analysis, interpretation of results, and the writing of final study reports and manuscripts. 3. To work with all investigators in the development of research project database, to maintain data quality control and to ensure timely data capture. 4. To develop and evaluate statistical methods for experimental design and data analysis. The Biostatistics Core support is required in all proposed studies. Core personnel have worked and will continue to work closely with project leaders for assuring that Core provides state-of-the-art statistical support.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA128323-04
Application #
8328131
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2011-09-02
Budget End
2012-08-31
Support Year
4
Fiscal Year
2011
Total Cost
$84,659
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Xu, Junzhong; Li, Ke; Smith, R Adam et al. (2017) A comparative assessment of preclinical chemotherapeutic response of tumors using quantitative non-Gaussian diffusion MRI. Magn Reson Imaging 37:195-202
Tang, Dewei; Li, Jun; Buck, Jason R et al. (2017) Evaluation of TSPO PET Ligands [18F]VUIIS1009A and [18F]VUIIS1009B: Tracers for Cancer Imaging. Mol Imaging Biol 19:578-588
Jiang, Xiaoyu; Li, Hua; Xie, Jingping et al. (2017) In vivo imaging of cancer cell size and cellularity using temporal diffusion spectroscopy. Magn Reson Med 78:156-164
Coffey, Aaron M; Shchepin, Roman V; Feng, Bibo et al. (2017) A pulse programmable parahydrogen polarizer using a tunable electromagnet and dual channel NMR spectrometer. J Magn Reson 284:115-124
Li, Ke; Li, Hua; Zhang, Xiao-Yong et al. (2016) Influence of water compartmentation and heterogeneous relaxation on quantitative magnetization transfer imaging in rodent brain tumors. Magn Reson Med 76:635-44
Jiang, Xiaoyu; Li, Hua; Xie, Jingping et al. (2016) Quantification of cell size using temporal diffusion spectroscopy. Magn Reson Med 75:1076-85
Li, Hua; Jiang, Xiaoyu; Xie, Jingping et al. (2016) Time-Dependent Influence of Cell Membrane Permeability on MR Diffusion Measurements. Magn Reson Med 75:1927-34
Uddin, Md Imam; Evans, Stephanie M; Craft, Jason R et al. (2016) In Vivo Imaging of Retinal Hypoxia in a Model of Oxygen-Induced Retinopathy. Sci Rep 6:31011
Uddin, Md Jashim; Moore, Chauca E; Crews, Brenda C et al. (2016) Fluorocoxib A enables targeted detection of cyclooxygenase-2 in laser-induced choroidal neovascularization. J Biomed Opt 21:90503
Xu, Junzhong; Li, Hua; Li, Ke et al. (2016) Fast and simplified mapping of mean axon diameter using temporal diffusion spectroscopy. NMR Biomed 29:400-10

Showing the most recent 10 out of 110 publications