Ovarian cancer is the most common cause of gynecologic cancer death in the U.S. and is responsible for approximately 16,000 deaths each year in the U.S. Recurrent disease remains incurable and has a dismal prognosis. Novel therapeutic agents are urgently needed. We have demonstrated that engineered measles virus strains have significant antitumor activity against ovarian cancer lines and xenografts. Their tumor specificity is due to abundant expression of the measles virus receptor CD46 in ovarian cancer cells. The virus, upon entry into tumor cells, causes membrane fusion with neighboring cells, syncytia formation and death. Our group was the first to translate this approach into a phase I clinical trial of a measles virus derivative producing human carcinoembryonic antigen, MV-CEA (CEA added to facilitate viral monitoring) in recurrent ovarian cancer patients. Despite low levels of viral replication, as evidenced by modest CEA elevation in a minority of patients, there was promising early evidence of antitumor activity, including CA-125 decreases and prolonged disease stabilization in heavily pretreated patients. We hypothesize that by increasing the efficiency and extent of tumor cell infection we can further augment the antitumor activity of measles virotherapy in ovarian cancer. We propose to accomplish this by testing the translational potential of three novel approaches: a different measles virus strain, MV-NlS, which encodes the Sodium Iodide Symporter (NIS) therapeutic transgene, thus allowing imaging of viral distribution in vivo and use of ^^^1 for radiovirotherapy;use of infected cell carriers for viral delivery;and, combining the measles virus with cyclophosphamide, an agent with immunosuppressive and antitumor properties. This grant proposal has, therefore, the following specific aims, 1) to perform a limited phase 1 trial of intraperitoneal (IP) administration of MV-NIS in patients with recurrent ovarian cancer;2) to optimize the efficacy of IP measles virotherapy for ovarian cancer in measles immune mice by employing virus infected cell carriers, and testing the added benefit of cyclophosphamide, an immunosuppressive drug with antitumor properties;3) to test the efficacy of intravenous (IV) measles virotherapy for ovarian cancer, and optimize it in measles immune mice by using virus infected cell carriers, with and without addition of cyclophosphamide; following optimization of IP or IV delivery the added value of ^^^1 radiovirotherapy will also be tested and 4) to translate the most promising approach to a phase 1 trial in patients with recurrent ovarian cancer.

Public Health Relevance

Ovarian cancer is the most common cause of gynecologic cancer death in the U.S. and is responsible for approximately 16,000 deaths each year in the US. Measles vaccine strains have significant preclinical antitumor activity against ovarian cancer, and a recently completed phase I trial of intraperitoneal administration of the measles strain MV-CEA indicates promising early biologic activity. This application proposes to investigate strategies to further optimize the use of measles vaccine strains as novel antitumor agents in the treatment of ovarian cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA136393-03
Application #
8305742
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2011-09-01
Budget End
2012-08-31
Support Year
3
Fiscal Year
2011
Total Cost
$344,948
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Wahner Hendrickson, Andrea E; Menefee, Michael E; Hartmann, Lynn C et al. (2018) A Phase I Clinical Trial of the Poly(ADP-ribose) Polymerase Inhibitor Veliparib and Weekly Topotecan in Patients with Solid Tumors. Clin Cancer Res 24:744-752
Natanzon, Yanina; Goode, Ellen L; Cunningham, Julie M (2018) Epigenetics in ovarian cancer. Semin Cancer Biol 51:160-169
Knijnenburg, Theo A; Wang, Linghua; Zimmermann, Michael T et al. (2018) Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Rep 23:239-254.e6
Jung, DeokBeom; Khurana, Ashwani; Roy, Debarshi et al. (2018) Quinacrine upregulates p21/p27 independent of p53 through autophagy-mediated downregulation of p62-Skp2 axis in ovarian cancer. Sci Rep 8:2487
Liu, Gang; Mukherjee, Bhramar; Lee, Seunggeun et al. (2018) Robust Tests for Additive Gene-Environment Interaction in Case-Control Studies Using Gene-Environment Independence. Am J Epidemiol 187:366-377
Ong, Jue-Sheng; Hwang, Liang-Dar; Cuellar-Partida, Gabriel et al. (2018) Assessment of moderate coffee consumption and risk of epithelial ovarian cancer: a Mendelian randomization study. Int J Epidemiol 47:450-459
Kalli, Kimberly R; Block, Matthew S; Kasi, Pashtoon M et al. (2018) Folate Receptor Alpha Peptide Vaccine Generates Immunity in Breast and Ovarian Cancer Patients. Clin Cancer Res 24:3014-3025
Zhang, Qing; Wang, Chen; Cliby, William A (2018) Cancer-associated stroma significantly contributes to the mesenchymal subtype signature of serous ovarian cancer. Gynecol Oncol :
Morehead, Lauren C; Cannon, Martin J (2018) Further clinical advancement of dendritic cell vaccination against ovarian cancer. Ann Res Hosp 2:
Botuyan, Maria Victoria; Cui, Gaofeng; Drané, Pascal et al. (2018) Mechanism of 53BP1 activity regulation by RNA-binding TIRR and a designer protein. Nat Struct Mol Biol 25:591-600

Showing the most recent 10 out of 294 publications