The long-term goal of the SPORE in Soft Tissue Sarcoma is to reduce morbidity and mortality from soft tissue sarcoma by developing therapies targeted to the molecular, genetic, epigenetic, and signaling pathway alterations that are specific to sarcoma type and subtype. To pursue this, we will focus our efforts on 3 broad translational research objectives: 1. Define shared and type-specific molecular mechanisms of sarcomagenesis to identify new rational therapeutic targets, 2. Define mechanisms of resistance to targeted therapies, 3. Develop and validate targeted therapies in clinical studies. To achieve these goals we have marshaled an integrated, multidisciplinary group of basic and clinical investigators all armed with a unique resource, a clinicopathologic and outcomes database prospectively collected over a 27-year period containing data for over 8300 patients treated for soft tissue sarcoma at MSKCC. This database has been linked for the past 16 years to an institutional tissue bank, and for the past 7 years to a comprehensive tissue procurement process for establishment of primary sarcoma cell lines and mouse xenograft models of human sarcoma. The SPORE is structured around 4 research projects, 3 cores, and career development and developmental research programs. Each research project focuses on at least one of the 3 broad translational research goals listed above. RP-1 (Imatinib Resistance) aims to identify new therapeutic targets and develop new treatment strategies for pediatric and imatinib-resistant GIST. RP-2 (PDGFR/PI3K/mT0R Targeting) evaluates strategies for targeting PDGFRA signaling and reducing activated Akt in synovial sarcoma and sarcoma types that show increased expression of PDGFRA using cell lines, xenograft models, and phase II clinical trials. RP-3 (Target Discovery) aims to identify genomic drivers of oncogenesis in myxofibrosarcoma and pleomorphic malignant fibrous histiocytoma so as to identify new therapeutic targets. RP-4 (Epigenetic Therapy) aims to elucidate the epigenetic mechanisms and histone code alterations involved in the deregulation of SYT-SSX target genes in synovial sarcoma so as to enhance our understanding of synovial sarcoma pathogenesis and guide the development of new selective epigenetic therapies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
1P50CA140146-01A1
Application #
7938373
Study Section
Special Emphasis Panel (ZCA1-GRB-I (M1))
Program Officer
Ujhazy, Peter
Project Start
2010-07-01
Project End
2015-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
1
Fiscal Year
2010
Total Cost
$2,300,000
Indirect Cost
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Chen, Yu; Chi, Ping (2018) Basket trial of TRK inhibitors demonstrates efficacy in TRK fusion-positive cancers. J Hematol Oncol 11:78
Owosho, Adepitan A; Estilo, Cherry L; Huryn, Joseph M et al. (2018) A Clinicopathologic Study of Head and Neck Malignant Peripheral Nerve Sheath Tumors. Head Neck Pathol 12:151-159
Dickson, Brendan C; Sung, Yun-Shao; Rosenblum, Marc K et al. (2018) NUTM1 Gene Fusions Characterize a Subset of Undifferentiated Soft Tissue and Visceral Tumors. Am J Surg Pathol 42:636-645
Ran, Leili; Chen, Yuedan; Sher, Jessica et al. (2018) FOXF1 Defines the Core-Regulatory Circuitry in Gastrointestinal Stromal Tumor. Cancer Discov 8:234-251
Klein, Mary E; Dickson, Mark A; Antonescu, Cristina et al. (2018) PDLIM7 and CDH18 regulate the turnover of MDM2 during CDK4/6 inhibitor therapy-induced senescence. Oncogene 37:5066-5078
Banito, Ana; Li, Xiang; Laporte, Aimée N et al. (2018) The SS18-SSX Oncoprotein Hijacks KDM2B-PRC1.1 to Drive Synovial Sarcoma. Cancer Cell 34:346-348
Klein, Mary E; Kovatcheva, Marta; Davis, Lara E et al. (2018) CDK4/6 Inhibitors: The Mechanism of Action May Not Be as Simple as Once Thought. Cancer Cell 34:9-20
Kao, Yu-Chien; Owosho, Adepitan A; Sung, Yun-Shao et al. (2018) BCOR-CCNB3 Fusion Positive Sarcomas: A Clinicopathologic and Molecular Analysis of 36 Cases With Comparison to Morphologic Spectrum and Clinical Behavior of Other Round Cell Sarcomas. Am J Surg Pathol 42:604-615
Owosho, Adepitan A; Zhang, Lei; Rosenblum, Marc K et al. (2018) High sensitivity of FISH analysis in detecting homozygous SMARCB1 deletions in poorly differentiated chordoma: a clinicopathologic and molecular study of nine cases. Genes Chromosomes Cancer 57:89-95
Suurmeijer, Albert J H; Dickson, Brendan C; Swanson, David et al. (2018) A novel group of spindle cell tumors defined by S100 and CD34 co-expression shows recurrent fusions involving RAF1, BRAF, and NTRK1/2 genes. Genes Chromosomes Cancer 57:611-621

Showing the most recent 10 out of 169 publications