Synovial sarcoma (SS), an often lethal sarcoma occurring predominantly in young adults, is defined by a specific chromosomal translocation, t(X;18), which fuses the SYT gene on chromosome 18 to either the SSXl or the SSX2 gene on chromosome X. The SYT-SSX fusion oncoprotein functions as aberrant transcriptional protein that SYT-SSX exerts its transcriptional effects by interacting with histone-modifying enzymes, leading to a deregulation of epigenetic control of gene expression. The present proposal brings together expertise in fundamental histone code biology with experience in synovial sarcoma cell line- and human tissue-based translational research to develop a deeper understanding of SYT-SSX-dependent histone code alterations that could lead to more rational, more precisely targeted, and, hopefully, more effective epigenetic therapy for synovial sarcoma. The proposed work addresses the central role of SYTSSX- dependent epigenetic alterations in the biology of synovial sarcoma from three complementary perspectives: mechanistic (Aim 1), global genomic (Aim 2), and preclinical (Aim 3). Certain cancers are thought to arise from genetic rearrangements that join separate genes to produce new fusion genes with abnormal functions. The SYT-SSX fusion gene in synovial sarcoma is such a gene. Understanding and targeting the biological mechanisms used by these cancer-causing fusion genes can lead to effective therapeutics, as exemplified by imatinib targeting BCR-ABL in chronic myelogenous leukemia and all-trans retinoic acid targeting PML-RARa in acute promyelocytic leukemia.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA140146-02
Application #
8314125
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
2
Fiscal Year
2011
Total Cost
$216,180
Indirect Cost
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Chen, Yu; Chi, Ping (2018) Basket trial of TRK inhibitors demonstrates efficacy in TRK fusion-positive cancers. J Hematol Oncol 11:78
Owosho, Adepitan A; Estilo, Cherry L; Huryn, Joseph M et al. (2018) A Clinicopathologic Study of Head and Neck Malignant Peripheral Nerve Sheath Tumors. Head Neck Pathol 12:151-159
Dickson, Brendan C; Sung, Yun-Shao; Rosenblum, Marc K et al. (2018) NUTM1 Gene Fusions Characterize a Subset of Undifferentiated Soft Tissue and Visceral Tumors. Am J Surg Pathol 42:636-645
Ran, Leili; Chen, Yuedan; Sher, Jessica et al. (2018) FOXF1 Defines the Core-Regulatory Circuitry in Gastrointestinal Stromal Tumor. Cancer Discov 8:234-251
Klein, Mary E; Dickson, Mark A; Antonescu, Cristina et al. (2018) PDLIM7 and CDH18 regulate the turnover of MDM2 during CDK4/6 inhibitor therapy-induced senescence. Oncogene 37:5066-5078
Banito, Ana; Li, Xiang; Laporte, Aimée N et al. (2018) The SS18-SSX Oncoprotein Hijacks KDM2B-PRC1.1 to Drive Synovial Sarcoma. Cancer Cell 34:346-348
Klein, Mary E; Kovatcheva, Marta; Davis, Lara E et al. (2018) CDK4/6 Inhibitors: The Mechanism of Action May Not Be as Simple as Once Thought. Cancer Cell 34:9-20
Kao, Yu-Chien; Owosho, Adepitan A; Sung, Yun-Shao et al. (2018) BCOR-CCNB3 Fusion Positive Sarcomas: A Clinicopathologic and Molecular Analysis of 36 Cases With Comparison to Morphologic Spectrum and Clinical Behavior of Other Round Cell Sarcomas. Am J Surg Pathol 42:604-615
Owosho, Adepitan A; Zhang, Lei; Rosenblum, Marc K et al. (2018) High sensitivity of FISH analysis in detecting homozygous SMARCB1 deletions in poorly differentiated chordoma: a clinicopathologic and molecular study of nine cases. Genes Chromosomes Cancer 57:89-95
Suurmeijer, Albert J H; Dickson, Brendan C; Swanson, David et al. (2018) A novel group of spindle cell tumors defined by S100 and CD34 co-expression shows recurrent fusions involving RAF1, BRAF, and NTRK1/2 genes. Genes Chromosomes Cancer 57:611-621

Showing the most recent 10 out of 169 publications