Gastrointestinal stromal tumors (GISTs) are driven by KIT receptor tyrosine kinase, and most have gain-offunction mutations In KIT or occasionally in PDGFRA. Imatinib, which inhibits KIT and PDGFRA, produces a partial response or stable disease in 80% of GIST patients, but complete response is rare. Moreover, about half of the patients who benefit from imatinib treatment eventually develop drug resistance, and few other treatments are available. A common mechanism of acquired resistance is second-site KIT mutations. We propose 4 overall objectives. (1) Use genomic approaches to identify alternative signaling pathways in GIST lacking KIT or PDGFRA mutations and in imatinib-resistant GIST lacking an Identifiable mechanism of resistance. Candidate genes will be validated and pathway analysis applied to identify potential targets for therapy. (2) Identify mutations that confer resistance to imatinib or to other kinase inhibitors so as to develop guidelines for genotype-tailored therapy. (3) Investigate novel pharmacological intervention strategies in vivo in the KitV558del/+ mouse, a model of imatinib-responsive GIST. (4) Develop imatinib-resistant mouse models and apply them for the evaluation of new treatment strategies for imatinibresistant GIST. The treatment strategies to be tested are second^generation tyrosine kinase inhibitors alone and In combination with inhibitors of downstream effectors of KIT, targeting PI 3-kinase, integrin, and STAT signaling. By elucidating the pathways active in imatinib-resistant GIST and by preclinical investigations, we aim to find new therapeutic options for patients with Imatinib-resistant GIST.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA140146-03
Application #
8379500
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
3
Fiscal Year
2012
Total Cost
$1,232,964
Indirect Cost
$1,008,618
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Dickson, Brendan C; Antonescu, Cristina R; Argyris, Prokopios P et al. (2018) Ectomesenchymal Chondromyxoid Tumor: A Neoplasm Characterized by Recurrent RREB1-MKL2 Fusions. Am J Surg Pathol 42:1297-1305
Weinreb, Ilan; Bishop, Justin A; Chiosea, Simion I et al. (2018) Recurrent RET Gene Rearrangements in Intraductal Carcinomas of Salivary Gland. Am J Surg Pathol 42:442-452
Kao, Yu-Chien; Flucke, Uta; Eijkelenboom, Astrid et al. (2018) Novel EWSR1-SMAD3 Gene Fusions in a Group of Acral Fibroblastic Spindle Cell Neoplasms. Am J Surg Pathol 42:522-528
Bartenstein, Diana W; Coe, Taylor M; Gordon, Samantha C et al. (2018) Lipofibromatosis-like neural tumor: Case report of a unique infantile presentation. JAAD Case Rep 4:185-188
Chen, Yu; Chi, Ping (2018) Basket trial of TRK inhibitors demonstrates efficacy in TRK fusion-positive cancers. J Hematol Oncol 11:78
Owosho, Adepitan A; Estilo, Cherry L; Huryn, Joseph M et al. (2018) A Clinicopathologic Study of Head and Neck Malignant Peripheral Nerve Sheath Tumors. Head Neck Pathol 12:151-159
Dickson, Brendan C; Sung, Yun-Shao; Rosenblum, Marc K et al. (2018) NUTM1 Gene Fusions Characterize a Subset of Undifferentiated Soft Tissue and Visceral Tumors. Am J Surg Pathol 42:636-645
Ran, Leili; Chen, Yuedan; Sher, Jessica et al. (2018) FOXF1 Defines the Core-Regulatory Circuitry in Gastrointestinal Stromal Tumor. Cancer Discov 8:234-251
Klein, Mary E; Dickson, Mark A; Antonescu, Cristina et al. (2018) PDLIM7 and CDH18 regulate the turnover of MDM2 during CDK4/6 inhibitor therapy-induced senescence. Oncogene 37:5066-5078
Banito, Ana; Li, Xiang; Laporte, Aimée N et al. (2018) The SS18-SSX Oncoprotein Hijacks KDM2B-PRC1.1 to Drive Synovial Sarcoma. Cancer Cell 34:346-348

Showing the most recent 10 out of 169 publications