The Biostatistics &Bioinformatics Core will support investigators of the SPORE in Soft Tissue Sarcoma in the computational and statistical aspects of their research efforts, including the design and analysis of clinical trials, laboratory experiments, molecular profiling, and sequencing, as well as integrated genomic analyses. In the clinical trial design phase, a core member will conduct a protocol review with the principal investigator. Based on this review, a statistical section for the protocol will be provided, outlining major scientific objectives, population to be studied, primary and secondary endpoints, experimental design, analysis plans, and a targeted sample size justified in probabilistic terms. At the conclusion of the trial, data analyses will be performed to assess outcomes of the primary and secondary endpoints stated in the protocol. In preclinical studies, core members will assist in the formulation of the experimental design and in the analysis and interpretation of the data at the conclusion of the study. The core will also assist in the large-scale molecular characterization of human sarcoma samples, which involves analyzing RNA expression, microRNA expression, mutations, and DNA copy number changes to identify predictors of tumor characteristics, drug response, and survival. Core members will use two-sample t-tests and Cox proportional hazards models to identify informative features. The different types of molecular data will be integrated and pathway analysis performed to elucidate the pathways that contribute to tumorigenesis and tumor phenotype. Risk prediction tools will be developed using Cox proportional hazards models based on these features.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Sloan-Kettering Institute for Cancer Research
New York
United States
Zip Code
Klein, Mary E; Dickson, Mark A; Antonescu, Cristina et al. (2018) PDLIM7 and CDH18 regulate the turnover of MDM2 during CDK4/6 inhibitor therapy-induced senescence. Oncogene 37:5066-5078
Banito, Ana; Li, Xiang; Laporte, Aimée N et al. (2018) The SS18-SSX Oncoprotein Hijacks KDM2B-PRC1.1 to Drive Synovial Sarcoma. Cancer Cell 34:346-348
Klein, Mary E; Kovatcheva, Marta; Davis, Lara E et al. (2018) CDK4/6 Inhibitors: The Mechanism of Action May Not Be as Simple as Once Thought. Cancer Cell 34:9-20
Kao, Yu-Chien; Owosho, Adepitan A; Sung, Yun-Shao et al. (2018) BCOR-CCNB3 Fusion Positive Sarcomas: A Clinicopathologic and Molecular Analysis of 36 Cases With Comparison to Morphologic Spectrum and Clinical Behavior of Other Round Cell Sarcomas. Am J Surg Pathol 42:604-615
Owosho, Adepitan A; Zhang, Lei; Rosenblum, Marc K et al. (2018) High sensitivity of FISH analysis in detecting homozygous SMARCB1 deletions in poorly differentiated chordoma: a clinicopathologic and molecular study of nine cases. Genes Chromosomes Cancer 57:89-95
Suurmeijer, Albert J H; Dickson, Brendan C; Swanson, David et al. (2018) A novel group of spindle cell tumors defined by S100 and CD34 co-expression shows recurrent fusions involving RAF1, BRAF, and NTRK1/2 genes. Genes Chromosomes Cancer 57:611-621
Bennett, Jennifer A; Braga, Ana C; Pinto, Andre et al. (2018) Uterine PEComas: A Morphologic, Immunohistochemical, and Molecular Analysis of 32 Tumors. Am J Surg Pathol 42:1370-1383
Kao, Yu-Chien; Fletcher, Christopher D M; Alaggio, Rita et al. (2018) Recurrent BRAF Gene Fusions in a Subset of Pediatric Spindle Cell Sarcomas: Expanding the Genetic Spectrum of Tumors With Overlapping Features With Infantile Fibrosarcoma. Am J Surg Pathol 42:28-38
Zhang, Jennifer Q; Zeng, Shan; Vitiello, Gerardo A et al. (2018) Macrophages and CD8+ T Cells Mediate the Antitumor Efficacy of Combined CD40 Ligation and Imatinib Therapy in Gastrointestinal Stromal Tumors. Cancer Immunol Res 6:434-447
Fittall, Matthew W; Mifsud, William; Pillay, Nischalan et al. (2018) Recurrent rearrangements of FOS and FOSB define osteoblastoma. Nat Commun 9:2150

Showing the most recent 10 out of 169 publications