Instnjctions): Current strategies for PCa treatment that target primarily the primary tumor or preserve bone have only modestly affected survival. The focus of this laboratory and collaborators for many years has been on Src family kinases (SFKs), the activation of which not only contribute to PCa metastasis in mouse models, by affecfing tumor cells, osteoclasts, osteoblasts and interacfions between these cells required for tumor cell growth in the bone. This project will test the central hypothesis that therapeutic strategies using Src inhibitors currently in clinical trial will prove efficacious in the treatment of PCa metastases in the bone. The rafionale for this hypothesis is that Src regulates signaling pathways both in tumor cells and in their microenvironment that contribute to the """"""""vicious cycle"""""""" of bone formafion, degradation and tumor growth, and is based, in part, on the promise of an ongoing phase l/ll clinical trial for metastafic prostate cancer using the combinafion of dasafinib (an SFK/AbI inhibitor) and docetaxel. This project will combine mechanistic-based strategies in preclinical mouse model systems to examine the specific contributions of Src in the host and tumor cell contribufing to growth in the bone with a phase III clinical trial using dasafinib.
The specific aims are to: (1) Determine the role of SFK inhibition in tumor cells, host cells, and both in affecting growth of PCa cells following intrafibial injecfion into nude mice;(2) Determine molecular alterafions in the tumor and host correlating with the effectiveness of dasatinib;and (3) Integrate this knowledge with a phase III trial using dasatinib in combinafion with docetaxel in a phase III trial in select pafients with castrate resistant prostate cancer and bone metastases, correlate changes in molecular markers of Src and bone preservation with clinical course of the disease. The trial will serve as a platform to associate markers of Src activation, with baseline and serial change(s) in bone turnover markers. Thus, the experiments in Project 3 are novel in that they build on a promising therapeutic strategy, which we also view as reiterative, where our increased knowledge of Src's effects in tumor/bone interacfion will help dictate clinical trial design, and the clinical trials will help refine modeling the disease in preclinical studies.

Public Health Relevance

Currently, no successful therapies exist for the treatment of late-stage prostate cancer (i.e. cancer that has metastasized, especially to the bone). However recent early-stage clinical trials using inhibitors of Src, which affects both tumor growth and interaction of tumor with its environment, have been promising. In this project, we will employ basic science strategies to understand which Src functions are crifical to this process, and use this knowledge in a phase III clinical trial to design better treatments for prostate cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA140388-02
Application #
8135430
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2010-09-01
Budget End
2011-08-31
Support Year
2
Fiscal Year
2010
Total Cost
$251,203
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Basourakos, Spyridon P; Davis, John W; Chapin, Brian F et al. (2018) Baseline and longitudinal plasma caveolin-1 level as a biomarker in active surveillance for early-stage prostate cancer. BJU Int 121:69-76
Pan, Tianhong; Lin, Song-Chang; Yu, Kai-Jie et al. (2018) BIGH3 Promotes Osteolytic Lesions in Renal Cell Carcinoma Bone Metastasis by Inhibiting Osteoblast Differentiation. Neoplasia 20:32-43
Yu-Lee, Li-Yuan; Yu, Guoyu; Lee, Yu-Chen et al. (2018) Osteoblast-Secreted Factors Mediate Dormancy of Metastatic Prostate Cancer in the Bone via Activation of the TGF?RIII-p38MAPK-pS249/T252RB Pathway. Cancer Res 78:2911-2924
Luo, Yong; Azad, Abul Kalam; Karanika, Styliani et al. (2018) Enzalutamide and CXCR7 inhibitor combination treatment suppresses cell growth and angiogenic signaling in castration-resistant prostate cancer models. Int J Cancer 142:2163-2174
Soundararajan, Rama; Aparicio, Ana M; Logothetis, Christopher J et al. (2018) Function of Tumor Suppressors in Resistance to Antiandrogen Therapy and Luminal Epithelial Plasticity of Aggressive Variant Neuroendocrine Prostate Cancers. Front Oncol 8:69
Class, Caleb A; Ha, Min Jin; Baladandayuthapani, Veerabhadran et al. (2018) iDINGO-integrative differential network analysis in genomics with Shiny application. Bioinformatics 34:1243-1245
Lin, Song-Chang; Yu-Lee, Li-Yuan; Lin, Sue-Hwa (2018) Osteoblastic Factors in Prostate Cancer Bone Metastasis. Curr Osteoporos Rep 16:642-647
Wang, Hong; Yang, Xu; Liu, Anna et al. (2018) ?-Tocopherol inhibits the development of prostate adenocarcinoma in prostate specific Pten-/- mice. Carcinogenesis 39:158-169
Velazquez-Torres, Guermarie; Shoshan, Einav; Ivan, Cristina et al. (2018) A-to-I miR-378a-3p editing can prevent melanoma progression via regulation of PARVA expression. Nat Commun 9:461
Zanoaga, Oana; Jurj, Ancuta; Raduly, Lajos et al. (2018) Implications of dietary ?-3 and ?-6 polyunsaturated fatty acids in breast cancer. Exp Ther Med 15:1167-1176

Showing the most recent 10 out of 217 publications