The Clinical Trials Core Facility of The M. D. Anderson Cancer Center SPORE in Multiple Myeloma will translate highly promising findings with potential application to the prevention, early detection, diagnosis, prognosis, and/or treatment of multiple myeloma from the laboratory to the clinic. Clinical trials coordinated by this Core will also promote the flow of information from the clinic back to the laboratory, with the goal of helping to inform and optimize the design of future clinical interventions. In order to accomplish these objectives, the Core will have the following specific aims: 1. To coordinate the development, submission, and regulatory approval of the SPORE clinical trials, in collaboration with the Administrative Core Facility (Core A) and the Biostatistics and Bioinformatics Core Facility (Core E);2. To assist SPORE investigators in rapidly and efficiently accruing patients to translational clinical trials emerging from SPORE Projects;3. To report adverse events to the Institutional Review Board and appropriate agencies, and assure compliance with all applicable regulatory guidelines, in collaboration with Core A;4. To provide quality control of the SPORE clinical trial data;5. To analyze clinical trials data from SPORE studies in collaboration with Core E; and 6. To facilitate and coordinate correlative specimen collection from patients enrolled on SPORE trials along with the Myeloma Tissue Core Facility (Core B). Taken together, therefore, this Core will provide the crucial link between the bench and the bedside that will allow this SPORE in Multiple Myeloma to meet its translational goals, and improve the outcomes of patients with multiple myeloma.

Public Health Relevance

The Clinical Trials Core Facility will coordinate all aspects of clinical research proposed in this SPORE application, including clinical trials conducted at The M. D. Anderson Cancer Center, and cooperative aspects of clinical trials between the University of Pennsylvania, and other SPORE trials.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
United States
Zip Code
Zhang, Jun; Medeiros, L Jeffrey; Young, Ken H (2018) Cancer Immunotherapy in Diffuse Large B-Cell Lymphoma. Front Oncol 8:351
Ni, Haiwen; Shirazi, Fazal; Baladandayuthapani, Veerabhadran et al. (2018) Targeting Myddosome Signaling in Waldenström's Macroglobulinemia with the Interleukin-1 Receptor-Associated Kinase 1/4 Inhibitor R191. Clin Cancer Res 24:6408-6420
Zhou, Liang; Zhang, Yu; Sampath, Deepak et al. (2018) Flavopiridol enhances ABT-199 sensitivity in unfavourable-risk multiple myeloma cells in vitro and in vivo. Br J Cancer 118:388-397
Davenport, Clemontina A; Maity, Arnab; Baladandayuthapani, Veerabhadran (2018) Functional interaction-based nonlinear models with application to multiplatform genomics data. Stat Med 37:2715-2733
Yao, Z; Deng, L; Xu-Monette, Z Y et al. (2018) Concordant bone marrow involvement of diffuse large B-cell lymphoma represents a distinct clinical and biological entity in the era of immunotherapy. Leukemia 32:353-363
Zhang, Xiaohui; Lee, Hans C; Shirazi, Fazal et al. (2018) Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma. Leukemia 32:2224-2239
Thomas, Sheeba K; Cha, Soung-Chul; Smith, D Lynne et al. (2018) Phase I study of an active immunotherapy for asymptomatic phase Lymphoplasmacytic lymphoma with DNA vaccines encoding antigen-chemokine fusion: study protocol. BMC Cancer 18:187
Xu-Monette, Zijun Y; Zhou, Jianfeng; Young, Ken H (2018) PD-1 expression and clinical PD-1 blockade in B-cell lymphomas. Blood 131:68-83
Wan, Wen; Pei, Xin-Yan; Grant, Steven et al. (2017) Nonlinear response surface in the study of interaction analysis of three combination drugs. Biom J 59:9-24
Nguyen, Tri; Parker, Rebecca; Hawkins, Elisa et al. (2017) Synergistic interactions between PLK1 and HDAC inhibitors in non-Hodgkin's lymphoma cells occur in vitro and in vivo and proceed through multiple mechanisms. Oncotarget 8:31478-31493

Showing the most recent 10 out of 203 publications