Our long-term goal is to develop therapeutic strategies that improve the survival of patients with disseminated melanoma by potentiating new and existing targeted therapies. Despite the impressive responses achieved in BRAF mutant melanoma patients treated with BRAF inhibitors, resistance inevitably occurs. A number of potential resistance mechanisms have been described, the majority of which bypass mutant BRAF through the reactivation of MAPK and PISK/AKT signaling. Although current clinical strategies are focused upon the use of BRAF inhibitors in conjunction with MEK or PISK inhibitors, the development of multiple, subtle signaling alterations at many nodes within the melanoma signaling network is likely to result in eventual resistance even to these combinations. Conceptually, we believe that the adaptive signals that mediate resistance in the majority of cases are both """"""""tumor-intrinsic"""""""", resulting from the rewiring of the melanoma signal transduction network, as well as """"""""host-derived"""""""", mediated by altered growth factor secretion and extracellular matrix from stromal fibroblasts. Our working hypothesis is that long-term abrogation of resistance will only be achieved if BF^F can be targeted in addition to multiple receptor tyrosine kinase (RTKs) and cell/matrix adhesion signals. Our preliminary studies suggest that most if not all of the signaling proteins implicated thus far in the escape from BRAF inhibitor therapy are clients of heat shock protein (HSP)-90, and we showed that inhibition of HSP90 was effective at preventing and overcoming resistance both in vitro and in vivo. In this proposal, we will use innovative phosphoproteomic- and chemical proteomic-based systems biology approaches to define the HSP """"""""clientome"""""""" that drives intrinsic and acquired resistance of melanomas to MAPK pathway inhibition (BRAF, MEK and BRAF+MEK). We will further investigate the role of fibroblast-derived signals in remodeling the HSP-clientome of melanoma cells and will determine how this allows the tumor to escape MAPK inhibitor-mediated apoptosis. Pre- and post-treatment biopsies from melanoma patients receiving a BRAF and HSP90 inhibitor combination (vemurafenib+XL888) will be analyzed to look for patterns of HSP client protein degradation associated with long-term therapeutic response. Together, these studies are expected to give a systems level view of how melanoma cells resist MAPK pathway inhibition and will provide new paradigms to overcome drug resistance in melanoma.

Public Health Relevance

Although small molecule inhibitors of BRAF and MEK and the BRAF+MEK inhibitor combination are showing great promise as novel melanoma therapies, their effectiveness is severely limited by both acquired and intrinsic drug resistance. The aim of the proposal is to use phospho-proteomics, chemical proteomics and network modeling to identify the key mechanisms of therapeutic escape and to perform preclinical experiments and to analyze specimens from an ongoing phase I clinical trial to determine whether inhibition of HSP90 abrogates the onset of BRAF inhibitor resistance.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA168536-02
Application #
8754423
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
2
Fiscal Year
2014
Total Cost
$220,387
Indirect Cost
$89,594
Name
H. Lee Moffitt Cancer Center & Research Institute
Department
Type
DUNS #
139301956
City
Tampa
State
FL
Country
United States
Zip Code
33612
Prieto-Granada, Carlos; Castner, Nicholas; Chen, Ann et al. (2018) Behavior of Cutaneous Adnexal Malignancies: a Single Institution Experience. Pathol Oncol Res :
Abate-Daga, Daniel; Ramello, Maria C; Smalley, Inna et al. (2018) The biology and therapeutic management of melanoma brain metastases. Biochem Pharmacol 153:35-45
Konno, Hiroyasu; Yamauchi, Shota; Berglund, Anders et al. (2018) Suppression of STING signaling through epigenetic silencing and missense mutation impedes DNA damage mediated cytokine production. Oncogene 37:2037-2051
Eroglu, Zeynep; Ozgun, Alpaslan (2018) Updates and challenges on treatment with BRAF/MEK-inhibitors in melanoma. Expert Opin Orphan Drugs 6:545-551
Zhu, Genyuan; Brayer, Jason; Padron, Eric et al. (2018) OMIP-049: Analysis of Human Myelopoiesis and Myeloid Neoplasms. Cytometry A 93:982-986
Zhu, Genyuan; Nemoto, Satoshi; Mailloux, Adam W et al. (2018) Induction of Tertiary Lymphoid Structures With Antitumor Function by a Lymph Node-Derived Stromal Cell Line. Front Immunol 9:1609
Ramello, Maria C; Haura, Eric B; Abate-Daga, Daniel (2018) CAR-T cells and combination therapies: What's next in the immunotherapy revolution? Pharmacol Res 129:194-203
Eroglu, Zeynep; Zaretsky, Jesse M; Hu-Lieskovan, Siwen et al. (2018) High response rate to PD-1 blockade in desmoplastic melanomas. Nature 553:347-350
Phadke, Manali; Remsing Rix, Lily L; Smalley, Inna et al. (2018) Dabrafenib inhibits the growth of BRAF-WT cancers through CDK16 and NEK9 inhibition. Mol Oncol 12:74-88
Saglam, Ozlen; Naqvi, Syeda M H; Zhang, Yonghong et al. (2018) Female genitourinary tract melanoma: mutation analysis with clinicopathologic correlation: a single-institution experience. Melanoma Res 28:586-591

Showing the most recent 10 out of 62 publications