The use of computed tomography (CT) for medical evaluation for lung cancer screening has resulted in a growing number of patients identified with pulmonary opacities, or lung nodules. Patients with lung nodules are at heightened risk of lung cancer; for those who currently smoke, cessation is the most important strategy available to reduce lung cancer risk. To date, there has been no research on tobacco cessation in lung nodule patients, who may have unique attributes (e.g., anxiety about having a nodule coupled with tobacco dependence) that warrant research for the development of maximally effective tobacco cessation interventions. We thus have designed and propose to evaluate 2 novel behavioral interventions as adjuncts to pharmacotherapy. Intervention 1 is based on a large body of research on gain-framed messages for promotion of smoking cessation, which in this case will be designed and personalized specifically for patients with lung nodules, to increase rates of quitting. Intervention 2 is based on our findings that tobacco cessation leads to improvements in health biomarkers (skin carotenoids, plasma bilirubin), and this information can be fed back to participants to prevent relapse and promote longer-term cessation. Specifically, we will enroll and randomize 276 patients with lung nodules to Intervention 1, consisting of a personalized video and print intervention, emphasizing the benefits (gain-framed) of quitting smoking, to evaluate the hypothesis that this will improve tobacco quit rates above and beyond standard of care smoking cessation treatment over 8 weeks. Then we will perform a second randomization to Intervention 2, an individual-level, biofeedback intervention to examine the hypothesis that this intervention will reduce smoking at 6 months. In addition, we propose to evaluate the impact of smoking cessation on microRNA profiles in human serum, with particular interest in levels of the let-7 family of microRNAs, to better understand the biological mechanisms by which smoking cessation reduces lung tumor promotion and to explore another potential biomarker of cessation. Blood/DNA will also be banked to support future biomarker-based studies. Overall, this project aims to develop transferable interventions to improve short- and longer-term smoking cessation rates in this understudied high- risk patient population, while also evaluating mechanisms involving tobacco carcinogenesis, with clear translational potential.

Public Health Relevance

Improving and implementing smoking cessation interventions for patients with lung nodules (i.e., a ?spot? or opacity on a picture of their lung) will enhance the field of lung cancer prevention by reducing current smoking rates of these patients. With rising rates of lung cancer screening, the population of lung nodule patients is growing rapidly, so improved smoking cessation interventions afford a new opportunity to greatly impact tobacco and lung cancer control efforts in the United States in a high risk population.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA196530-05
Application #
9767075
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2019-08-01
Budget End
2020-07-31
Support Year
5
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Yale University
Department
Type
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Burslem, George M; Smith, Blake E; Lai, Ashton C et al. (2018) The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study. Cell Chem Biol 25:67-77.e3
Liu, Huafeng; Li, Xin; Hu, Li et al. (2018) A crucial role of the PD-1H coinhibitory receptor in suppressing experimental asthma. Cell Mol Immunol 15:838-845
Choe, Junho; Lin, Shuibin; Zhang, Wencai et al. (2018) mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature 561:556-560
Bade, Brett C; Hyer, J Madison; Bevill, Benjamin T et al. (2018) A Patient-Centered Activity Regimen Improves Participation in Physical Activity Interventions in Advanced-Stage Lung Cancer. Integr Cancer Ther 17:921-927
Tentori, Augusto M; Nagarajan, Maxwell B; Kim, Jae Jung et al. (2018) Quantitative and multiplex microRNA assays from unprocessed cells in isolated nanoliter well arrays. Lab Chip 18:2410-2424
Fan, Pang-Dian; Narzisi, Giuseppe; Jayaprakash, Anitha D et al. (2018) YES1 amplification is a mechanism of acquired resistance to EGFR inhibitors identified by transposon mutagenesis and clinical genomics. Proc Natl Acad Sci U S A 115:E6030-E6038
Gupta, Swati; Mani, Navin R; Carvajal-Hausdorf, Daniel E et al. (2018) Macrodissection prior to closed system RT-qPCR is not necessary for estrogen receptor and HER2 concordance with IHC/FISH in breast cancer. Lab Invest 98:1076-1083
Robichaux, Jacqulyne P; Elamin, Yasir Y; Tan, Zhi et al. (2018) Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung cancer. Nat Med 24:638-646
Bondeson, Daniel P; Smith, Blake E; Burslem, George M et al. (2018) Lessons in PROTAC Design from Selective Degradation with a Promiscuous Warhead. Cell Chem Biol 25:78-87.e5
O'Malley, Stephanie S; Zweben, Allen; Fucito, Lisa M et al. (2018) Effect of Varenicline Combined With Medical Management on Alcohol Use Disorder With Comorbid Cigarette Smoking: A Randomized Clinical Trial. JAMA Psychiatry 75:129-138

Showing the most recent 10 out of 74 publications