Targeted therapies have completely transformed the landscape for diagnosis and treatment of metastatic lung cancer. Despite this success, targeted therapies are not curative and acquired resistance is a major impediment to cures or durable responses for patients treated with these therapies. A paradigm for the success of targeted therapies in lung cancer, comes from Epidermal Growth Factor Receptor (EGFR) mutant lung cancer. Mutations in exons encoding the tyrosine kinase domain of EGFR are found in approximately 10- 15% of lung adenocarcinomas in the US. These mutations confer sensitivity to tyrosine kinase inhibitors (TKIs) and four TKIs (erlotinib, gefitinib, afatinib and, most recently, osimertinib) are currently approved for the first-line treatment of EGFR mutant lung cancer. Acquired drug resistance, however, is a major challenge with all of these TKIs including osimertinib, but we have very limited knowledge of the mechanisms of resistance to osimertinib given its recent adoption in the clinic. Without knowledge about resistance mechanisms, optimal post-osimertinib treatment strategies remain to be defined. Data from our labs and others indicate that osimertinib resistance can arise through both EGFR-dependent mechanisms involving several different types of EGFR mutation and EGFR-independent mechanisms ? frequently epigenetic in origin ? that are poorly understood. Very little is known about the molecular context(s) in which these resistance mechanisms emerge, their frequency, biochemistry and how to target them pharmacologically. Given the speed of adoption of osimertinib as 1st line therapy, there is an urgent need to identify these mechanisms and resulting vulnerabilities. We propose to leverage our collective expertise in lung cancer biology, mouse models, resistance to targeted therapies and EGFR structural biology to address these issues. Using unique in vitro and in vivo models and patient resources of acquired resistance to osimertinib, innovative genomic and biochemical tools we will: 1) Identify molecular features and new therapeutic vulnerabilities of osimertinib-resistance EGFR variants. 2) Establish mutant EGFR heterodimerization patterns and determine whether these can be leveraged therapeutically to overcome osimertinib resistance; 3) Identify epigenetic processes that confer TKI resistance. Our studies will yield a comprehensive understanding of osimertinib resistance and insight with which to develop new mechanism-based approaches to target osimertinib-resistant tumors ? an urgent unmet clinical need.

Public Health Relevance

Targeted therapies have completely transformed the landscape for diagnosis and treatment of metastatic EGFR mutant lung cancer. Despite this success, even the newest targeted therapies, like osimertinib, are not curative and acquired resistance is a major impediment to cures for patients. We will use our collective expertise in lung cancer biology, mouse models and EGFR structural biology to obtain a comprehensive understanding of osimertinib resistance and insight with which to develop new mechanism-based approaches to target osimertinib-resistant tumors ? an urgent unmet clinical need.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA196530-06
Application #
9854324
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
6
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Yale University
Department
Type
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Goldberg, Sarah B; Patel, Abhijit A (2018) Monitoring immunotherapy outcomes with circulating tumor DNA. Immunotherapy 10:1023-1025
Lopez Sambrooks, Cecilia; Baro, Marta; Quijano, Amanda et al. (2018) Oligosaccharyltransferase Inhibition Overcomes Therapeutic Resistance to EGFR Tyrosine Kinase Inhibitors. Cancer Res 78:5094-5106
Wilson, Frederick H; Politi, Katerina (2018) ERBB Signaling Interrupted: Targeting Ligand-Induced Pathway Activation. Cancer Discov 8:676-678
Wang, Guangchuan; Chow, Ryan D; Ye, Lupeng et al. (2018) Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR-mediated direct in vivo screening. Sci Adv 4:eaao5508
Villarroel-Espindola, Franz; Yu, Xiaoqing; Datar, Ila et al. (2018) Spatially Resolved and Quantitative Analysis of VISTA/PD-1H as a Novel Immunotherapy Target in Human Non-Small Cell Lung Cancer. Clin Cancer Res 24:1562-1573
Anastasiadou, Eleni; Jacob, Leni S; Slack, Frank J (2018) Non-coding RNA networks in cancer. Nat Rev Cancer 18:5-18
Bisserier, Malik; Wajapeyee, Narendra (2018) Mechanisms of resistance to EZH2 inhibitors in diffuse large B-cell lymphomas. Blood 131:2125-2137
Chow, Ryan D; Chen, Sidi (2018) Cancer CRISPR Screens In Vivo. Trends Cancer 4:349-358
Xiao, Qian; Wu, Jibo; Wang, Wei-Jia et al. (2018) DKK2 imparts tumor immunity evasion through ?-catenin-independent suppression of cytotoxic immune-cell activation. Nat Med 24:262-270
Goldberg, Sarah B; Narayan, Azeet; Kole, Adam J et al. (2018) Early Assessment of Lung Cancer Immunotherapy Response via Circulating Tumor DNA. Clin Cancer Res 24:1872-1880

Showing the most recent 10 out of 74 publications