Lung cancers are the major source of metastasis in the central nervous system (CNS). There is an important gap in our understanding of how brain metastases respond to therapies and what mechanisms sustain metastatic tumors in the CNS. Historically, the blood brain barrier has been viewed as an impediment to systemic drugs, and novel brain penetrant agents such as the mutant EGFR inhibitor osimertinib have been developed. However, despite improved clinical responses with these agents, brain metastases still progress, and it is unknown how perturbations in the brain tumor microenvironment (TME) can be leveraged for more effective treatments in patients with CNS disease. We have developed novel methods to molecularly characterize human cerebral spinal fluid (CSF) as well as distinguish tumor from stromal gene alterations of brain metastasis in vivo. Our approaches uncover genetic mutations as well as brain TME induced alterations that converge onto cooperating pathways, such as those regulated by VEGF, NOTCH, ?-catenin and PI3K. We hypothesize that these molecular alterations: 1) cooperatively drive NSCLC brain metastasis and drug resistance in the brain, 2) are clinically actionable, and 3) are more accurately detected in human CSF or brain biopsies, due to divergent genetic evolution and TME induced adaptation of brain metastasis. Our hypothesis will be studied in 3 independent yet complimentary aims.
In Aim1, we propose to collect human CSF from craniotomies as well as lumbar punctures of lung cancer patients with brain metastases who will be undergoing a bronchoscopic biopsy. By comparing the mutational landscape of matched CSF, plasma and tumor tissue, we will molecularly characterize humans with asymptomatic brain metastasis. Moreover, we will use novel orthotopic patient derived xenograft models (PDXs) to determine if brain metastasis progression and drug response correlates with co-occurring mutations identified in human CSF.
In Aim 2, we will test the novel hypothesis that an activated brain microvasculature enhances the survival of drug resistant tumor cells via stromal induced NOTCH signaling in vivo. We will assess if novel bi-specific agents which simultaneously inhibit VEGF and NOTCH can delay brain metastasis progression and/or improve osimertinib response in pre-clinical models. Using human biospecimens, we will correlate the expression of VEGF and NOTCH pathway components with brain metastatic relapse.
In Aim 3, we will conduct a clinical trial combining a mutation specific TKI (osimertinib) with a brain vascular targeting agent (bevacizumab) in treatment nave lung cancer patients with EGFR mutant tumors and CNS disease. Finally, molecular markers (including those studied in Aims 1 and 2) of response or resistance to this combination will be identified by analyzing CSF, plasma and tumor biopsies. This proposal will help uncover the biological basis of brain metastasis relapse. Importantly, our study will generate insight as to how current and prospective therapies can be harnessed to target both tumor specific mutations and the TME, in a manner that improves clinical outcomes for lung cancer patients with CNS disease.

Public Health Relevance

Thoracic malignancies frequently metastasize into the brain, which significantly diminishes patient survival and quality of life. Our novel multi-disciplinary approach proposes to reveal markers and mediators of brain metastasis from lung cancer patients at the time of their diagnosis. We believe that this project will reveal fundamental new methods of identifying lung cancer patients with treatment refractory brain metastasis as well as provide more tailored therapeutic opportunities to treat their disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA196530-06
Application #
9854325
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
6
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Yale University
Department
Type
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Rojewski, Alana M; Tanner, Nichole T; Dai, Lin et al. (2018) Tobacco Dependence Predicts Higher Lung Cancer and Mortality Rates and Lower Rates of Smoking Cessation in the National Lung Screening Trial. Chest 154:110-118
Chen, Ling; Azuma, Takeshi; Yu, Weiwei et al. (2018) B7-H1 maintains the polyclonal T cell response by protecting dendritic cells from cytotoxic T lymphocyte destruction. Proc Natl Acad Sci U S A 115:3126-3131
Zhang, Jinhua; Song, Kun; Wang, Jun et al. (2018) S100A4 blockage alleviates agonistic anti-CD137 antibody-induced liver pathology without disruption of antitumor immunity. Oncoimmunology 7:e1296996
Anastasiadou, Eleni; Faggioni, Alberto; Trivedi, Pankaj et al. (2018) The Nefarious Nexus of Noncoding RNAs in Cancer. Int J Mol Sci 19:
Toki, Maria I; Mani, Nikita; Smithy, James W et al. (2018) Immune Marker Profiling and Programmed Death Ligand 1 Expression Across NSCLC Mutations. J Thorac Oncol 13:1884-1896
Park, Seyoung; Zhao, Hongyu (2018) Spectral clustering based on learning similarity matrix. Bioinformatics 34:2069-2076
Gettinger, S N; Choi, J; Mani, N et al. (2018) A dormant TIL phenotype defines non-small cell lung carcinomas sensitive to immune checkpoint blockers. Nat Commun 9:3196
Adams, Brian D; Arem, Hannah; Hubal, Monica J et al. (2018) Exercise and weight loss interventions and miRNA expression in women with breast cancer. Breast Cancer Res Treat 170:55-67
Burslem, George M; Smith, Blake E; Lai, Ashton C et al. (2018) The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study. Cell Chem Biol 25:67-77.e3
Liu, Huafeng; Li, Xin; Hu, Li et al. (2018) A crucial role of the PD-1H coinhibitory receptor in suppressing experimental asthma. Cell Mol Immunol 15:838-845

Showing the most recent 10 out of 74 publications