Lung cancers are the major source of metastasis in the central nervous system (CNS). There is an important gap in our understanding of how brain metastases respond to therapies and what mechanisms sustain metastatic tumors in the CNS. Historically, the blood brain barrier has been viewed as an impediment to systemic drugs, and novel brain penetrant agents such as the mutant EGFR inhibitor osimertinib have been developed. However, despite improved clinical responses with these agents, brain metastases still progress, and it is unknown how perturbations in the brain tumor microenvironment (TME) can be leveraged for more effective treatments in patients with CNS disease. We have developed novel methods to molecularly characterize human cerebral spinal fluid (CSF) as well as distinguish tumor from stromal gene alterations of brain metastasis in vivo. Our approaches uncover genetic mutations as well as brain TME induced alterations that converge onto cooperating pathways, such as those regulated by VEGF, NOTCH, ?-catenin and PI3K. We hypothesize that these molecular alterations: 1) cooperatively drive NSCLC brain metastasis and drug resistance in the brain, 2) are clinically actionable, and 3) are more accurately detected in human CSF or brain biopsies, due to divergent genetic evolution and TME induced adaptation of brain metastasis. Our hypothesis will be studied in 3 independent yet complimentary aims.
In Aim1, we propose to collect human CSF from craniotomies as well as lumbar punctures of lung cancer patients with brain metastases who will be undergoing a bronchoscopic biopsy. By comparing the mutational landscape of matched CSF, plasma and tumor tissue, we will molecularly characterize humans with asymptomatic brain metastasis. Moreover, we will use novel orthotopic patient derived xenograft models (PDXs) to determine if brain metastasis progression and drug response correlates with co-occurring mutations identified in human CSF.
In Aim 2, we will test the novel hypothesis that an activated brain microvasculature enhances the survival of drug resistant tumor cells via stromal induced NOTCH signaling in vivo. We will assess if novel bi-specific agents which simultaneously inhibit VEGF and NOTCH can delay brain metastasis progression and/or improve osimertinib response in pre-clinical models. Using human biospecimens, we will correlate the expression of VEGF and NOTCH pathway components with brain metastatic relapse.
In Aim 3, we will conduct a clinical trial combining a mutation specific TKI (osimertinib) with a brain vascular targeting agent (bevacizumab) in treatment nave lung cancer patients with EGFR mutant tumors and CNS disease. Finally, molecular markers (including those studied in Aims 1 and 2) of response or resistance to this combination will be identified by analyzing CSF, plasma and tumor biopsies. This proposal will help uncover the biological basis of brain metastasis relapse. Importantly, our study will generate insight as to how current and prospective therapies can be harnessed to target both tumor specific mutations and the TME, in a manner that improves clinical outcomes for lung cancer patients with CNS disease.

Public Health Relevance

Thoracic malignancies frequently metastasize into the brain, which significantly diminishes patient survival and quality of life. Our novel multi-disciplinary approach proposes to reveal markers and mediators of brain metastasis from lung cancer patients at the time of their diagnosis. We believe that this project will reveal fundamental new methods of identifying lung cancer patients with treatment refractory brain metastasis as well as provide more tailored therapeutic opportunities to treat their disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA196530-06
Application #
9854325
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
6
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Yale University
Department
Type
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Burslem, George M; Smith, Blake E; Lai, Ashton C et al. (2018) The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study. Cell Chem Biol 25:67-77.e3
Liu, Huafeng; Li, Xin; Hu, Li et al. (2018) A crucial role of the PD-1H coinhibitory receptor in suppressing experimental asthma. Cell Mol Immunol 15:838-845
Choe, Junho; Lin, Shuibin; Zhang, Wencai et al. (2018) mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature 561:556-560
Bade, Brett C; Hyer, J Madison; Bevill, Benjamin T et al. (2018) A Patient-Centered Activity Regimen Improves Participation in Physical Activity Interventions in Advanced-Stage Lung Cancer. Integr Cancer Ther 17:921-927
Tentori, Augusto M; Nagarajan, Maxwell B; Kim, Jae Jung et al. (2018) Quantitative and multiplex microRNA assays from unprocessed cells in isolated nanoliter well arrays. Lab Chip 18:2410-2424
Fan, Pang-Dian; Narzisi, Giuseppe; Jayaprakash, Anitha D et al. (2018) YES1 amplification is a mechanism of acquired resistance to EGFR inhibitors identified by transposon mutagenesis and clinical genomics. Proc Natl Acad Sci U S A 115:E6030-E6038
Gupta, Swati; Mani, Navin R; Carvajal-Hausdorf, Daniel E et al. (2018) Macrodissection prior to closed system RT-qPCR is not necessary for estrogen receptor and HER2 concordance with IHC/FISH in breast cancer. Lab Invest 98:1076-1083
Robichaux, Jacqulyne P; Elamin, Yasir Y; Tan, Zhi et al. (2018) Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung cancer. Nat Med 24:638-646
Bondeson, Daniel P; Smith, Blake E; Burslem, George M et al. (2018) Lessons in PROTAC Design from Selective Degradation with a Promiscuous Warhead. Cell Chem Biol 25:78-87.e5
O'Malley, Stephanie S; Zweben, Allen; Fucito, Lisa M et al. (2018) Effect of Varenicline Combined With Medical Management on Alcohol Use Disorder With Comorbid Cigarette Smoking: A Randomized Clinical Trial. JAMA Psychiatry 75:129-138

Showing the most recent 10 out of 74 publications