The extremely poor prognosis and lack of effective treatments for glioblastoma (GBM) remains a significant public health issue. While traditional MRI techniques are valuable in determining GBM response to common anti-neoplastic therapies, novel treatments including immunotherapies, anti-angiogenic agents, or therapies that alter tumor metabolism may result in radiographic changes that are challenging to differentiate from non- responsive or growing tumor. Therefore, the primary goal of the Neuro-Imaging Core (NIC) will be to provide advanced MRI and PET imaging support with established reliability and consistency to SPORE project investigators for their respective projects. Specifically, the NIC will use quantitative ?MRI and ?PET for pre- clinical imaging (Aim 1) and state-of-the-art MR and PET imaging acquisition, advanced post-processing, and novel analysis tools for clinical imaging of patients in novel clinical trials (Aim 2). Hence, this Core will add value to the overall SPORE by helping investigators to better understand the in situ metabolic, physiologic, and traditional radiographic changes within the brain and tumor in order to address specific objectives of each of the UCLA Brain Cancer SPORE projects. Another main goal of the NIC is to understand the link between metabolic and/or physiologic imaging and tumor biology in order to reliably delineate treatment response versus recurrent tumor (Aim 3), which in turn will facilitate the direct translation of new MR-PET companion biomarkers/techniques to the clinic for the evaluation of treatment response in ongoing and new therapeutic clinical trials resulting from the SPORE projects and cores.

Public Health Relevance

Core 2: Neuro-Imaging Core (NIC) NARRATIVE Standard radiographic interpretation of the therapeutic benefit of new treatment paradigms for glioblastoma remains a significant scientific and clinical challenge. Therefore, the purpose of the Neuro-Imaging Core (NIC) is to provide reliable/consistent standard and advanced pre-clinical and clinical imaging support for all projects in the UCLA SPORE in Brain Cancer in order to non-invasively stratify for treatment prognosis and to quantify treatment-related changes in tumor biology.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA211015-02
Application #
9543449
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2018-08-01
Budget End
2019-07-31
Support Year
2
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Chakhoyan, Ararat; Woodworth, Davis C; Harris, Robert J et al. (2018) Mono-exponential, diffusion kurtosis and stretched exponential diffusion MR imaging response to chemoradiation in newly diagnosed glioblastoma. J Neurooncol 139:651-659
Mehta, Shwetal (2018) Editorial: The Role of Microenvironment in the Homing, Maintenance, and Release of Glioma Stem-Like Cells. Front Oncol 8:7
Orozco, Luz D; Farrell, Colin; Hale, Christopher et al. (2018) Epigenome-wide association in adipose tissue from the METSIM cohort. Hum Mol Genet 27:1830-1846
Garrett, Matthew; Sperry, Jantzen; Braas, Daniel et al. (2018) Metabolic characterization of isocitrate dehydrogenase (IDH) mutant and IDH wildtype gliomaspheres uncovers cell type-specific vulnerabilities. Cancer Metab 6:4
Yu, Songlin; Ma, Samantha J; Liebeskind, David S et al. (2018) ASPECTS-based reperfusion status on arterial spin labeling is associated with clinical outcome in acute ischemic stroke patients. J Cereb Blood Flow Metab 38:382-392
Keegan, Caroline; Krutzik, Stephan; Schenk, Mirjam et al. (2018) Mycobacterium tuberculosis Transfer RNA Induces IL-12p70 via Synergistic Activation of Pattern Recognition Receptors within a Cell Network. J Immunol 200:3244-3258
Gupta, Arpana; Woodworth, Davis C; Ellingson, Benjamin M et al. (2018) Disease-Related Microstructural Differences in the Brain in Women With Provoked Vestibulodynia. J Pain 19:528.e1-528.e15
Lückerath, Katharina; Stuparu, Andreea D; Wei, Liu et al. (2018) Detection Threshold and Reproducibility of 68Ga-PSMA11 PET/CT in a Mouse Model of Prostate Cancer. J Nucl Med 59:1392-1397
Li, Tie; Cox, Christopher D; Ozer, Byram H et al. (2018) D-2-Hydroxyglutarate Is Necessary and Sufficient for Isocitrate Dehydrogenase 1 Mutant-Induced MIR148A Promoter Methylation. Mol Cancer Res 16:947-960
Pope, Whitney B (2018) Brain metastases: neuroimaging. Handb Clin Neurol 149:89-112

Showing the most recent 10 out of 91 publications