Project 1: Active immunotherapy combined with checkpoint modulation for glioblastoma SUMMARY/ABSTRACT The lack of effective treatments for glioblastoma (GBM) patients remains a significant health problem and highlights the need for novel and innovative approaches. Immunotherapy is an appealing strategy because of the potential ability for immune cells to traffic to and destroy infiltrating tumor cells in the brain. Pre-clinical studies and clinical trials of dendritic cell (DC) vaccination for GBM have shown some promising results, but also some treatment failures. The broad overall goals of this research project are to investigate mechanisms of immune evasion following active immunotherapy, and to develop rational combinations of immunotherapeutic strategies to overcome the immunosuppressive milieu of the brain tumor microenvironment. Our new preliminary data strongly suggests that active immunotherapy with DC vaccination may create a pro-inflammatory tumor microenvironment that induces the immigration of immunosuppressive antigen presenting cells (iAPC), which express high levels of PD-L1 and IL-10. We show that these cells are phenotypically similar to the iAPC that dominantly influence the T-cell response to chronic viral infection, and may act to counteract effective T-cell responses induced by DC vaccination via a mechanism involving PDL1/PD-1. Furthermore, inhibition of iAPC using an anti-PD1 mAb (Nivolumab, BMS) or a CNS penetrant inhibitor of CSF-1R (PLX-3397, Plexxikon), in conjunction with tumor lysate-pusled DC vaccination (DC-Vax-L), resulted in significantly prolonged survival in tumor-bearing animals with well-established intracranial (i.c.) gliomas. We therefore postulate that clinically relevant anti-tumor immunity to glioblastoma (GBM) must have two cellular components: 1) significant infiltration of tumor-specific tumor-infiltrating lymphocytes (TIL); and 2) blockade of immune-regulatory antigen presenting cell (iAPC) function within the tumor microenvironment. As such, our hypothesis is that the local cellular interactions between iAPC and T lymphocytes within the brain tumor microenvironment is a critical factor influencing the efficacy of immunotherapies in glioblastoma patients. A better understanding of the biology of these cellular interactions will provide insight into more effective ways to induce therapeutic anti-tumor immune responses for this deadly type of brain tumor.
In Aim 1, we will study the mechanisms by which iAPC limit glioma- specific anti-tumor immune responses in vitro and in vivo.
In Aim 2, we will evaluate the efficacy of combining tumor lysate-pulsed DC vaccination (to induce T-cell infiltration into tumors) with immune checkpoint inhibition and other novel immunoregulatory targets (to block iAPC function) in pre-clinical syngeneic animal models of glioblastoma, and explore the use of a novel PET tracers as non-invasive imaging biomarkers of immune response. Finally, in Aim 3, we will develop and validate predictive tumor, immunological and imaging biomarkers of response in recurrent glioblastoma patients enrolled in a Phase II clinical trial of DCVax-L +/- Nivolumab. These studies span the continuum of translational research in brain tumor immunotherapy, and will likely provided informative new insights for the development of new, rational immune-based strategies for brain tumor patients.

Public Health Relevance

Project 1: Active immunotherapy combined with checkpoint modulation for glioblastoma NARRATIVE The studies proposed herein are designed to investigate mechanisms of immune evasion following active immunotherapy with brain cancer vaccines. We will test our hypothesis that clinically relevant anti-tumor immunity to glioblastoma (GBM) must have two cellular components: 1) significant infiltration of tumor-specific tumor-infiltrating lymphocytes (TIL); and 2) blockade of immune-regulatory antigen presenting cell (iAPC) function within the tumor microenvironment. We believe that a combination of active vaccination (to induce T- cell infiltration into tumors) and immune checkpoint inhibition (to block iAPC function) may lead to improved outcomes for the treatment of glioblastoma.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA211015-02
Application #
9543452
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2018-08-01
Budget End
2019-07-31
Support Year
2
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Li, Tie; Cox, Christopher D; Ozer, Byram H et al. (2018) D-2-Hydroxyglutarate Is Necessary and Sufficient for Isocitrate Dehydrogenase 1 Mutant-Induced MIR148A Promoter Methylation. Mol Cancer Res 16:947-960
Pope, Whitney B (2018) Brain metastases: neuroimaging. Handb Clin Neurol 149:89-112
Kepe, Vladimir; Scafoglio, Claudio; Liu, Jie et al. (2018) Positron emission tomography of sodium glucose cotransport activity in high grade astrocytomas. J Neurooncol 138:557-569
Magaki, Shino; Parks, Robyn; Vinters, Harry V et al. (2018) A 44-Year-Old Female with Familial Mediterranean Fever, Cardiomyopathy and End Stage Renal Disease. Brain Pathol 28:135-136
Gallaher, Sean D; Fitz-Gibbon, Sorel T; Strenkert, Daniela et al. (2018) High-throughput sequencing of the chloroplast and mitochondrion of Chlamydomonas reinhardtii to generate improved de novo assemblies, analyze expression patterns and transcript speciation, and evaluate diversity among laboratory strains and wild isolates. Plant J 93:545-565
Calais, Jeremie; Czernin, Johannes; Cao, Minsong et al. (2018) 68Ga-PSMA-11 PET/CT Mapping of Prostate Cancer Biochemical Recurrence After Radical Prostatectomy in 270 Patients with a PSA Level of Less Than 1.0 ng/mL: Impact on Salvage Radiotherapy Planning. J Nucl Med 59:230-237
Liau, Linda M; Ashkan, Keyoumars; Tran, David D et al. (2018) First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med 16:142
Ellingson, Benjamin M; Wen, Patrick Y; Cloughesy, Timothy F (2018) Evidence and context of use for contrast enhancement as a surrogate of disease burden and treatment response in malignant glioma. Neuro Oncol 20:457-471
Ellingson, Benjamin M; Abrey, Lauren E; Nelson, Sarah J et al. (2018) Validation of postoperative residual contrast-enhancing tumor volume as an independent prognostic factor for overall survival in newly diagnosed glioblastoma. Neuro Oncol 20:1240-1250
Majedi, Fatemeh S; Hasani-Sadrabadi, Mohammad Mahdi; Kidani, Yoko et al. (2018) Cytokine Secreting Microparticles Engineer the Fate and the Effector Functions of T-Cells. Adv Mater 30:

Showing the most recent 10 out of 91 publications