Degeneration of spiral ganglion (cochlear) neurons is one of the most commonly observed changes in the aging inner ear. In humans and some animal species, neuronal degeneration occurs in the absence of sensory hair cell loss. One factor contributing to neuronal presbyacusis may be changes in the production of trophic molecules derived from sensory hair cells, ganglionic supporting cells or the neurons themselves. Several neurotrophic factors are expressed in the inner ear and members of the neurotrophin gene family are known to be critical for development of cochlear and vestibular neurons. To test the hypothesis that changes in neurotrophins and/or their associated receptors contribute to the age- related loss of neurons, a series of complementary experiments will be conducted using gerbil and human inner ear tissue.
Aim 4. 1 addresses the temporal and spatial expression of neurotrophins and their associated receptors using the reverse transcription polymerase chain reaction and in situ hybridization.
Aim 4. 2 evaluates the production of neurotrophin- like proteins using immunohistochemistry, in vitro assays of inner ear tissues and enzyme-linked immunoabsorbant assays.
Aim 4. 3 examines whether the survival or outgrowth of neuronal processes from young and aging cochlear neurons is influenced by exogenously applied neurotrophins or other inner ear-derived factors. Together, the proposed experiments will offer new sights into the role of neurotrophins in the aging inner ear as well as information regarding the therapeutic potential of neurotrophic molecules in preventing age-related hearing loss.

Project Start
1999-07-01
Project End
2000-06-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
13
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Medical University of South Carolina
Department
Type
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29425
McRackan, Theodore R; Clinkscales, William B; Ahlstrom, Jayne B et al. (2018) Factors associated with benefit of active middle ear implants compared to conventional hearing aids. Laryngoscope 128:2133-2138
Dias, James W; McClaskey, Carolyn M; Harris, Kelly C (2018) Time-Compressed Speech Identification Is Predicted by Auditory Neural Processing, Perceptuomotor Speed, and Executive Functioning in Younger and Older Listeners. J Assoc Res Otolaryngol :
Worley, Mitchell L; Schlosser, Rodney J; Soler, Zachary M et al. (2018) Age-related differences in olfactory cleft volume in adults: A computational volumetric study. Laryngoscope :
McClaskey, Carolyn M; Dias, James W; Dubno, Judy R et al. (2018) Reliability of Measures of N1 Peak Amplitude of the Compound Action Potential in Younger and Older Adults. J Speech Lang Hear Res 61:2422-2430
Vaden Jr, Kenneth I; Matthews, Lois J; Dubno, Judy R (2018) Transient-Evoked Otoacoustic Emissions Reflect Audiometric Patterns of Age-Related Hearing Loss. Trends Hear 22:2331216518797848
Simpson, Annie N; Matthews, Lois J; Cassarly, Christy et al. (2018) Time From Hearing Aid Candidacy to Hearing Aid Adoption: A Longitudinal Cohort Study. Ear Hear :
Noble, Kenyaria V; Reyzer, Michelle L; Barth, Jeremy L et al. (2018) Use of Proteomic Imaging Coupled With Transcriptomic Analysis to Identify Biomolecules Responsive to Cochlear Injury. Front Mol Neurosci 11:243
Simpson, Annie N; Simpson, Kit N; Dubno, Judy R (2018) Healthcare Costs for Insured Older U.S. Adults with Hearing Loss. J Am Geriatr Soc 66:1546-1552
Lewis, Morag A; Nolan, Lisa S; Cadge, Barbara A et al. (2018) Whole exome sequencing in adult-onset hearing loss reveals a high load of predicted pathogenic variants in known deafness-associated genes and identifies new candidate genes. BMC Med Genomics 11:77
Bologna, William J; Vaden Jr, Kenneth I; Ahlstrom, Jayne B et al. (2018) Age effects on perceptual organization of speech: Contributions of glimpsing, phonemic restoration, and speech segregation. J Acoust Soc Am 144:267

Showing the most recent 10 out of 135 publications