Significant progress has been made towards defining the mechanisms whereby mutations in the CF gene lead to airway infection and bronchiectasis, but the potential role of aberrant mucin processing in the pathogenesis of CF lung disease remains unclear. The mucin MUC1 is the only known transmembrane mucin the human lung, and is expressed in differentiated surface epithelial cells and in the serous cells of submucosal glands, which previously have bene shown to express high levels of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). The cellular co-localization of MUC1 and CFTR, and the reported role of CFTR in the post-translational processing of glycoconjugates, suggest that CFTR mutations may alter the processing of MUC1. Moreover, the structure and spatial distribution of MUC1 implicate it in the interaction between the apical membrane of airway epithelia and luminal bacteria. The central hypotheses of this proposal re therefore that CF mutations impair the post- translational processing and release of MUC1, and that this impairs the contribution of MUC1 to normal airway defense against bacterial infection. Accordingly, specific aims are: 1. To define the cellular localization of the transmembrane mucin MUC1 in normal and diseased human airway epithelium and secretions. The expression and cellular distribution of MUC1 in human airway and in a clinically relevant in vitro system of primary CF and non-CF human airway epithelium will be determined using immunocytochemistry, flow cytometry, and immunoelectron microscopy. 2. To determine whether CFTR influences the post-translational processing of MUC1. The sulfation and sialylation of MUC1 will be determined in CALU-3 cells and in primary cultures of CF and non-CF epithelia. CFTR expression will be down regulated using an anti-sense approach in CALU-3 cells. 3. To determine whether MUC1 is aberrantly processed and released in CF airway epithelia. The kinetics of MUC1 trafficking and release in the presence and absence of cAMP stimulation will be determined in non-CF and CF airway epithelia. The kinetics of MUC1 trafficking and release in the presence and absence of cAMP stimulation will be determined in non- CF and CF airway epithelia, and in CALU-3 cells expressing various levels of CFTR. 4. To determine the impact of CF mutations in the interaction between MUC1 and Pseudomonas aeruginosa.. Bacterial adhesion will be compare din primary airway cells, and in CALU-3 cells in which CFTR and/or MUC1 expression have been down regulated. Completion of these aims will define the influence of CFTR on the processing and function of a specific mucin in human airway and thereby improve the understanding of the pathogenesis of airway infection in CF.

Project Start
1999-09-15
Project End
2000-07-31
Budget Start
Budget End
Support Year
1
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Type
DUNS #
053785812
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Zemke, Anna C; Shiva, Sruti; Burns, Jane L et al. (2014) Nitrite modulates bacterial antibiotic susceptibility and biofilm formation in association with airway epithelial cells. Free Radic Biol Med 77:307-16
Myerburg, Mike M; Latoche, Joseph D; McKenna, Erin E et al. (2007) Hepatocyte growth factor and other fibroblast secretions modulate the phenotype of human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 292:L1352-60
Ameen, Nadia; Silvis, Mark; Bradbury, Neil A (2007) Endocytic trafficking of CFTR in health and disease. J Cyst Fibros 6:1-14
Myerburg, Mike M; Butterworth, Michael B; McKenna, Erin E et al. (2006) Airway surface liquid volume regulates ENaC by altering the serine protease-protease inhibitor balance: a mechanism for sodium hyperabsorption in cystic fibrosis. J Biol Chem 281:27942-9
Potter, Beth A; Hughey, Rebecca P; Weisz, Ora A (2006) Role of N- and O-glycans in polarized biosynthetic sorting. Am J Physiol Cell Physiol 290:C1-C10
Kinlough, Carol L; McMahan, Rebecca J; Poland, Paul A et al. (2006) Recycling of MUC1 is dependent on its palmitoylation. J Biol Chem 281:12112-22
Pilewski, Joseph M; Liu, Lixin; Henry, Adam C et al. (2005) Insulin-like growth factor binding proteins 3 and 5 are overexpressed in idiopathic pulmonary fibrosis and contribute to extracellular matrix deposition. Am J Pathol 166:399-407
Engelmann, Katja; Kinlough, Carol L; Muller, Stefan et al. (2005) Transmembrane and secreted MUC1 probes show trafficking-dependent changes in O-glycan core profiles. Glycobiology 15:1111-24
Singh, Ashvani K; Schultz, Bruce D; van Driessche, Willy et al. (2004) Transepithelial fluctuation analysis of chloride secretion. J Cyst Fibros 3 Suppl 2:127-32
Kinlough, Carol L; Poland, Paul A; Bruns, James B et al. (2004) MUC1 membrane trafficking is modulated by multiple interactions. J Biol Chem 279:53071-7

Showing the most recent 10 out of 25 publications