Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Specialized Center (P50)
Project #
5P50DK065298-02
Application #
7661810
Study Section
Special Emphasis Panel (ZDK1)
Project Start
2004-09-01
Project End
2008-08-31
Budget Start
Budget End
Support Year
2
Fiscal Year
2004
Total Cost
Indirect Cost
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Vasquez, Evalynn; Cristofaro, Vivian; Lukianov, Stefan et al. (2017) Deletion of neuropilin 2 enhances detrusor contractility following bladder outlet obstruction. JCI Insight 2:e90617
Doyle, Claire; Cristofaro, Vivian; Sack, Bryan S et al. (2017) Inosine attenuates spontaneous activity in the rat neurogenic bladder through an A2B pathway. Sci Rep 7:44416
Mucka, Patrick; Levonyak, Nicholas; Geretti, Elena et al. (2016) Inflammation and Lymphedema Are Exacerbated and Prolonged by Neuropilin 2 Deficiency. Am J Pathol 186:2803-2812
De Filippo, Roger E; Kornitzer, Benjamin S; Yoo, James J et al. (2015) Penile urethra replacement with autologous cell-seeded tubularized collagen matrices. J Tissue Eng Regen Med 9:257-64
Mauney, Joshua R; Adam, Rosalyn M (2015) Dynamic reciprocity in cell-scaffold interactions. Adv Drug Deliv Rev 82-83:77-85
Chung, Yeun Goo; Seth, Abhishek; Doyle, Claire et al. (2015) Inosine Improves Neurogenic Detrusor Overactivity following Spinal Cord Injury. PLoS One 10:e0141492
Sun, Y; Kaneko, S; Li, X K et al. (2015) The PI3K/Akt signal hyperactivates Eya1 via the SUMOylation pathway. Oncogene 34:2527-37
Morley, Samantha; You, Sungyong; Pollan, Sara et al. (2015) Regulation of microtubule dynamics by DIAPH3 influences amoeboid tumor cell mechanics and sensitivity to taxanes. Sci Rep 5:12136
Kanellis, D C; Bursac, S; Tsichlis, P N et al. (2015) Physical and functional interaction of the TPL2 kinase with nucleophosmin. Oncogene 34:2516-26
Yang, Wei; Ramachandran, Aruna; You, Sungyong et al. (2014) Integration of proteomic and transcriptomic profiles identifies a novel PDGF-MYC network in human smooth muscle cells. Cell Commun Signal 12:44

Showing the most recent 10 out of 81 publications