Trauma and hemorrhage elicit an acute inflammatory response. This complex process is observed at the cellular, tissue, organ, and whole-organism levels. It is now appreciated that Damage-Associated Molecular Pattern (DAMP) molecules and the signaling cascades induced by their receptors on multiple cell types mediate and modulate central aspects of this inflammatory response. Though daunting at first blush, the complexity of inflammation can be studied and outcomes can be predicted using pioneering computational simulations created by our group. We hypothesize that a validated and calibrated mathematical model of inflammation and its pathologic consequences at the multiple scales will be useful for predicting outcome in patients suffering from traumatic/hemorrhagic shock. We will test this hypothesis in three Specific Aims.
In Aim 1, we will utilize gene- modified mice and cells, multiplexed analyte data, statistical methods, and multi-scale simulations of the inflammatory response in order to discern DAMP-driven master switches that might be modified therapeutically. Preconditioning (the phenomenon in which prior exposure to a given stimulus will modify the response to a subsequent stimulus) is a central feature of the non-linear Inflammatory trajectories and outcomes of trauma patients, and its dependence on initial conditions and other system states makes preconditioning a prime example of inflammation as a complex system.
In Aim 2, we will deflne in silico the in vitro and in vivo roles of DAMP'S and their receptors in the phenomenon of preconditioning.
In Aim 3, we will create patient-specific and population simulations of the human inflammatory response to trauma that include both plasma analyte dynamics and cytokine single nucleotide polymorphisms, coupled to in silico clinical trials using novel computational insights and methods. The research proposed herein will impact both basic and translational research on the inflammatory process of shock/trauma.

Public Health Relevance

The work proposed herein would lead to the creation of a series of computational simulations of inflammation, testing the hypothesis that the response to damaged tissue acts as a central mediator, integrator, and possible therapeutic target in the setting of trauma/hemorrhage. This work would include the creation of patient-specific diagnostics as well as simulated clinical trials, and thus is translational. PROJECJ/

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM053789-17
Application #
8522291
Study Section
Special Emphasis Panel (ZGM1-PPBC-5)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
17
Fiscal Year
2013
Total Cost
$282,556
Indirect Cost
$67,207
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Schimunek, Lukas; Namas, Rami A; Yin, Jinling et al. (2018) An Enrichment Strategy Yields Seven Novel Single Nucleotide Polymorphisms Associated With Mortality and Altered Th17 Responses Following Blunt Trauma. Shock 49:259-268
Zettel, Kent; Korff, Sebastian; Zamora, Ruben et al. (2017) Toll-Like Receptor 4 on both Myeloid Cells and Dendritic Cells Is Required for Systemic Inflammation and Organ Damage after Hemorrhagic Shock with Tissue Trauma in Mice. Front Immunol 8:1672
Sun, Qian; Loughran, Patricia; Shapiro, Richard et al. (2017) Redox-dependent regulation of hepatocyte absent in melanoma 2 inflammasome activation in sterile liver injury in mice. Hepatology 65:253-268
Zettel, Kent R; Dyer, Mitchell; Raval, Jay S et al. (2017) Aged Human Stored Red Blood Cell Supernatant Inhibits Macrophage Phagocytosis in an HMGB1 Dependent Manner After Trauma in a Murine Model. Shock 47:217-224
Moore, Frederick A; Moore, Ernest E; Billiar, Timothy R et al. (2017) The role of NIGMS P50 sponsored team science in our understanding of multiple organ failure. J Trauma Acute Care Surg 83:520-531
Yang, Yong; Zhang, Peng; Zhao, Yanfeng et al. (2016) Decreased MicroRNA-26a expression causes cisplatin resistance in human non-small cell lung cancer. Cancer Biol Ther 17:515-25
Yang, Weng-Lang; Sharma, Archna; Wang, Zhimin et al. (2016) Cold-inducible RNA-binding protein causes endothelial dysfunction via activation of Nlrp3 inflammasome. Sci Rep 6:26571
Vodovotz, Yoram (2016) Reverse Engineering the Inflammatory ""Clock"": From Computational Modeling to Rational Resetting. Drug Discov Today Dis Models 22:57-63
Yang, Jie; Zhao, Yanfeng; Zhang, Peng et al. (2016) Hemorrhagic shock primes for lung vascular endothelial cell pyroptosis: role in pulmonary inflammation following LPS. Cell Death Dis 7:e2363
Namas, Rami A; Almahmoud, Khalid; Mi, Qi et al. (2016) Individual-specific principal component analysis of circulating inflammatory mediators predicts early organ dysfunction in trauma patients. J Crit Care 36:146-153

Showing the most recent 10 out of 302 publications