Stable isotope tracers have become invaluable tools with which to investigate human metabolism. This laboratory has been involved in the application and development of stable isotope tracer methods for the past 20 years. New kinetic models and analytical approaches have been developed in this lab to investigate various aspects of glucose, fat and protein metabolism. The specific goal of this core laboratory is to make available mass spectrometry analysis for all projects involved with the Burn Center. We have all the equipment necessary to perform stable isotope enrichment measurements, including five quadrupole gas chromatograph mass spectrometers, a gas chromatography-combustion- isotope ratio mass spectrometer, an isotope ratio mass spectrometer interfaced to an elemental analyzer, and an inductively coupled plasma mass spectrometer. We also have the necessary expertise to trouble shoot and develop new analytical procedures. Our expertise in mathematical modeling will be central to the interpretation of resulting enrichment data. Training and education are also an aspect of the mass spec core activity.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM060338-02
Application #
6493335
Study Section
Special Emphasis Panel (ZGM1)
Project Start
2001-03-01
Project End
2002-02-28
Budget Start
Budget End
Support Year
2
Fiscal Year
2001
Total Cost
$166,566
Indirect Cost
Name
University of Texas Medical Br Galveston
Department
Type
DUNS #
041367053
City
Galveston
State
TX
Country
United States
Zip Code
77555
Berger, Nathan A; Besson, Valerie C; Boulares, A Hamid et al. (2018) Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. Br J Pharmacol 175:192-222
Ogunbileje, John O; Herndon, David N; Murton, Andrew J et al. (2018) The Role of Mitochondrial Stress in Muscle Wasting Following Severe Burn Trauma. J Burn Care Res 39:100-108
Rivas, Eric; Herndon, David N; Cambiaso-Daniel, Janos et al. (2018) Quantification of an Exercise Rehabilitation Program for Severely Burned Children: The Standard of Care at Shriners Hospitals for Children®-Galveston. J Burn Care Res 39:889-896
Guillory, Ashley N; Clayton, Robert P; Prasai, Anesh et al. (2018) Buprenorphine-Sustained Release Alters Hemodynamic Parameters in a Rat Burn Model. J Surg Res 232:154-159
?apek, Karel D; Culnan, Derek M; Desai, Manubhai H et al. (2018) Fifty Years of Burn Care at Shriners Hospitals for Children, Galveston. Ann Plast Surg 80:S90-S94
Korkmaz-Icöz, Sevil; Szczesny, Bartosz; Marcatti, Michela et al. (2018) Olaparib protects cardiomyocytes against oxidative stress and improves graft contractility during the early phase after heart transplantation in rats. Br J Pharmacol 175:246-261
Cambiaso-Daniel, Janos; Rivas, Eric; Carson, Joshua S et al. (2018) Cardiorespiratory Capacity and Strength Remain Attenuated in Children with Severe Burn Injuries at Over 3 Years Postburn. J Pediatr 192:152-158
Rontoyanni, Victoria G; Malagaris, Ioannis; Herndon, David N et al. (2018) Skeletal Muscle Mitochondrial Function is Determined by Burn Severity, Sex, and Sepsis, and is Associated With Glucose Metabolism and Functional Capacity in Burned Children. Shock 50:141-148
Cambiaso-Daniel, Janos; Rontoyanni, Victoria G; Foncerrada, Guillermo et al. (2018) Correlation between invasive and noninvasive blood pressure measurements in severely burned children. Burns 44:1787-1791
Ojeda, Sylvia; Blumenthal, Emily; Stevens, Pamela et al. (2018) The Safety and Efficacy of Propranolol in Reducing the Hypermetabolic Response in the Pediatric Burn Population. J Burn Care Res 39:963-969

Showing the most recent 10 out of 253 publications