This application is a competitive renewal which originally hypothesized that hypermetabolic responses to a thermal injury greater than 40% total body surface area burned, persisted throughout the first year post burn, and was partially mediated by an increase in the production of cortisol and catecholamines leading to muscle wasting, weakness, immunosuppression, chronic bone loss, decreased growth, and increases in metabolic, hemodynamic, inflammatory and scar responses. We have shown that the hypermetabolic response to a severe burn is associated with increased resting energy expenditure, insulin resistance, immunodeficiency, ? and whole body catabolism that persists for months after injury. Furthermore, bone mineral content, lean body mass, and muscle strength is decreased at 6 and 9 months after severe burn. We have also shown that these responses can be positively affected by a high carbohydrate diet, exercise and growth hormone. The strong benefits of exercise have led us to propose three research projects and three core units. Project 1 will test the hypothesis that diet and exercise in conjunction with daily administration of propranolol, oxandrolone, or a cortisol-blocking agent (ketoconazole) will improve clinical outcomes and promote functional recovery in burned children. Project 2, tests the hypothesis that glucocorticoid antagonism is integral to the restoration of muscle anabolism in burned children. Project 3, will test the hypothesis that accumulation of intracellular triglycerides in liver and muscle directly causes insulin resistance in those tissues, or indicates intracellular accumulation of active fatty acid products, thereby disrupting insulin action. These projects, the Analytic Core, the Mass Spectrometry Core, and the Human Subjects Core, allow us to study mechanisms by which exercise and anabolic/anticatabolic agents affect muscle protein metabolism (Project 2), fat metabolism, and its interaction with protein metabolism in muscle and liver (Project 3), and how these mechanisms translate to clinical outcomes and the rehabilitation of burned children (Project 1). ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM060338-07
Application #
7093046
Study Section
Special Emphasis Panel (ZGM1-TB-5 (3P))
Program Officer
Somers, Scott D
Project Start
2000-03-01
Project End
2010-06-30
Budget Start
2006-07-01
Budget End
2007-06-30
Support Year
7
Fiscal Year
2006
Total Cost
$1,890,603
Indirect Cost
Name
University of Texas Medical Br Galveston
Department
Surgery
Type
Schools of Medicine
DUNS #
800771149
City
Galveston
State
TX
Country
United States
Zip Code
77555
Rivas, Eric; Herndon, David N; Chapa, Martha L et al. (2018) Children with severe burns display no sex differences in exercise capacity at hospital discharge or adaptation after exercise rehabilitation training. Burns 44:1187-1194
Ahmad, Akbar; Olah, Gabor; Herndon, David N et al. (2018) The clinically used PARP inhibitor olaparib improves organ function, suppresses inflammatory responses and accelerates wound healing in a murine model of third-degree burn injury. Br J Pharmacol 175:232-245
Voigt, Charles D; Hundeshagen, Gabriel; Malagaris, Ioannis et al. (2018) Effects of a restrictive blood transfusion protocol on acute pediatric burn care: Transfusion threshold in pediatric burns. J Trauma Acute Care Surg 85:1048-1054
Cambiaso-Daniel, Janos; Parry, Ingrid; Rivas, Eric et al. (2018) Strength and Cardiorespiratory Exercise Rehabilitation for Severely Burned Patients During Intensive Care Units: A Survey of Practice. J Burn Care Res 39:897-901
Chao, Tony; Porter, Craig; Herndon, David N et al. (2018) Propranolol and Oxandrolone Therapy Accelerated Muscle Recovery in Burned Children. Med Sci Sports Exerc 50:427-435
Rivas, Eric; McEntire, Serina J; Herndon, David N et al. (2018) Resting ?-Adrenergic Blockade Does Not Alter Exercise Thermoregulation in Children With Burn Injury: A Randomized Control Trial. J Burn Care Res 39:402-412
Murton, Andrew; Bohanon, Fredrick J; Ogunbileje, John O et al. (2018) Sepsis Increases Muscle Proteolysis in Severely Burned Adults, But Does Not Impact Whole-Body Lipid or Carbohydrate Kinetics. Shock :
Malagaris, Ioannis; Herndon, David N; Polychronopoulou, Efstathia et al. (2018) Determinants of skeletal muscle protein turnover following severe burn trauma in children. Clin Nutr :
El Ayadi, Amina; Prasai, Anesh; Wang, Ye et al. (2018) ?-Adrenergic Receptor Trafficking, Degradation, and Cell Surface Expression Are Altered in Dermal Fibroblasts from Hypertrophic Scars. J Invest Dermatol 138:1645-1655
Hundeshagen, Gabriel; Collins, Vanessa N; Wurzer, Paul et al. (2018) A Prospective, Randomized, Controlled Trial Comparing the Outpatient Treatment of Pediatric and Adult Partial-Thickness Burns with Suprathel or Mepilex Ag. J Burn Care Res 39:261-267

Showing the most recent 10 out of 253 publications