The overall goal of this Center of Excellence in Chemical Methodologies and Library Development grant application is to generate novel chemical libraries based on original research carried out in the areas of synthesis and analysis of novel peptide mimetics (Project 1), the combination of innovative methods for diversity-oriented synthesis and strategic separations (Project 2), and the development and implementation of fluoropolymer-based microreactors (Project 3). Our Program will develop new separation technologies using fluorous phase synthesis strategies, design and develop microreactors for nano-scale highly parallel organic synthesis, and discover new chiral stationary phases for liquid phase chromatography. Each Project has two stages: research and application. At the research stage, new methodologies will be developed in individual research groups. At the development stage, a centralized facility, the Diversity-Oriented Synthesis (DOS) Core with convenient access to state-of-the-art automated synthesis, separation, and analysis equipment, will validate the protocols and scale-up library synthesis to access 500-10,000 single compounds per library. This arrangement will provide truly independent validation for all new methodologies and provide the Projects with immediate """"""""real world"""""""" feedback of utility and practicality. Rigorous quality control will ensure high purity samples that will be shared with collaborators in the biological fields. This Compound Library, envisioned to be composed of ultimately >50,000 structurally diverse samples in 10-20 mg quantities, will also be accessible to outside parties from industry and academe. While academic labs have developed many new methods for library synthesis and contributed important insights toward efficient automation for library production and analysis, they have fallen short in actually producing libraries and making them accessible to non-specialized labs. Our Center Program will address this deficiency and realize a new paradigm in research validation and library scale-up. It combines the power of academic research and creativity in Chemistry with cutting-edge tools of automation in synthesis, analysis, and separation in an integrated, interdisciplinary manner that includes microscale device development and biological screening.
Showing the most recent 10 out of 166 publications