5. PROJECT 1. DYNAMICS IN DECISION MAKING: HOW CELLULAR NETWORKS ENCODE AND DECODE TEMPORAL INFORMATION SUMMARY There is growing evidence that the dynamics of signaling ? how the activity of specific pathways changes as a function of time ? may play a central role in the specificity of cellular information transmission. One general hypothesis is that distinct external inputs (different growth factors, stresses, etc.) can encode information in the dynamics of how central signaling nodes are activated (i.e. sustained vs transient activation; different frequency activation). In turn, these distinct dynamic properties could be decoded by downstream networks in order to yield distinct cellular response programs. Nonetheless, this dynamic encoding hypothesis has been difficult to test, because we have lacked the tools to systematically perturb signaling dynamics. We have recently developed a suite of cellular optogenetic switches that allow us to activate key intracellular regulatory nodes with light (e.g. Ras, MAPK, cAMP, transcription). Because we can use light to activate these nodes with arbitrary temporal patterns, they are powerful tools to systematically interrogate how cells encode and decode dynamical information. We propose to combine systematic optogenetic stimulation with quantitative response profiling to study a number of canonical cellular decision making systems (mammalian cell proliferation, yeast stress responses, and stem cell differentiation). These studies will give us a deeper quantitative understanding of how cellular information can be encoded in signaling dynamics. In addition, they should provide a basis for a deeper understanding of how changes in dynamics play a role in diseases such as cancer and how dynamic stimulation might also provide new modalities to modulate and control cellular behavior, especially in engineered therapeutic cells (e.g. PROJECT 3 includes engineering dynamic control of stem cell differentiation). We also hope to learn how to engineer signaling networks that can act as specific dynamic filters. LEAD Investigator: EL-SAMAD Investigators: EL-SAMAD, LIM, THOMSON, KROGAN, LI

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
San Francisco
United States
Zip Code
Bugaj, L J; Sabnis, A J; Mitchell, A et al. (2018) Cancer mutations and targeted drugs can disrupt dynamic signal encoding by the Ras-Erk pathway. Science 361:
Obernier, Kirsten; Cebrian-Silla, Arantxa; Thomson, Matthew et al. (2018) Adult Neurogenesis Is Sustained by Symmetric Self-Renewal and Differentiation. Cell Stem Cell 22:221-234.e8
Toda, Satoshi; Blauch, Lucas R; Tang, Sindy K Y et al. (2018) Programming self-organizing multicellular structures with synthetic cell-cell signaling. Science 361:156-162
Tsvetanova, Nikoleta G; Trester-Zedlitz, Michelle; Newton, Billy W et al. (2017) G Protein-Coupled Receptor Endocytosis Confers Uniformity in Responses to Chemically Distinct Ligands. Mol Pharmacol 91:145-156
Srinivas, Niranjan; Parkin, James; Seelig, Georg et al. (2017) Enzyme-free nucleic acid dynamical systems. Science 358:
Stewart-Ornstein, Jacob; Chen, Susan; Bhatnagar, Rajat et al. (2017) Model-guided optogenetic study of PKA signaling in budding yeast. Mol Biol Cell 28:221-227
Tsai, Yu-Hwai; Nattiv, Roy; Dedhia, Priya H et al. (2017) In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development. Development 144:1045-1055
Aranda-Díaz, Andrés; Mace, Kieran; Zuleta, Ignacio et al. (2017) Robust Synthetic Circuits for Two-Dimensional Control of Gene Expression in Yeast. ACS Synth Biol 6:545-554
Lim, Wendell A; June, Carl H (2017) The Principles of Engineering Immune Cells to Treat Cancer. Cell 168:724-740
Nissen, Kelly E; Homer, Christina M; Ryan, Colm J et al. (2017) The histone variant H2A.Z promotes splicing of weak introns. Genes Dev 31:688-701

Showing the most recent 10 out of 183 publications