The primary objectives of the Pittsburgh Center for HIV Protein Interactions (PCHPI), is to elucidate structural and functional interactions that occur during the process of HIV infection, in particular during the immediate post entry phase, in cells using structural biological approaches. Cutting edge light optical imaging approaches will play an important role in these investigations. Therefore, a central biological imaging core is an integral component of this proposal. The Core will be housed in the Center for Biologic Imaging (CBI), which is equipped to perform a continuum of optical methods including all types of microscopy essential to the PCHPI. Within the scope of PCHPI, the focus will be on highly sophisticated live cell imaging for tracking single particles. Our expertise in computerized image processing and morphometry will allow quantitative analysis of observed phenomena to corroborate subtle qualitative changes. Importantly, the CBI has several ongoing and intense interactions with PCHPI members as is reflected in the preliminary data section. Given the success of these interactions, we expect a continued expansion in the use of optical techniques through the PCHPI.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM082251-04
Application #
8120380
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
2010-08-01
Budget End
2011-07-31
Support Year
4
Fiscal Year
2010
Total Cost
$355,911
Indirect Cost
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Quinn, Caitlin M; Wang, Mingzhang; Polenova, Tatyana (2018) NMR of Macromolecular Assemblies and Machines at 1 GHz and Beyond: New Transformative Opportunities for Molecular Structural Biology. Methods Mol Biol 1688:1-35
Hadden, Jodi A; Perilla, Juan R (2018) All-atom virus simulations. Curr Opin Virol 31:82-91
Yan, Junpeng; Shun, Ming-Chieh; Hao, Caili et al. (2018) HIV-1 Vpr Reprograms CLR4DCAF1 E3 Ubiquitin Ligase to Antagonize Exonuclease 1-Mediated Restriction of HIV-1 Infection. MBio 9:
Dick, Robert A; Zadrozny, Kaneil K; Xu, Chaoyi et al. (2018) Inositol phosphates are assembly co-factors for HIV-1. Nature 560:509-512
Martin, Jessica L; Mendonça, Luiza M; Marusinec, Rachel et al. (2018) Critical Role of the Human T-Cell Leukemia Virus Type 1 Capsid N-Terminal Domain for Gag-Gag Interactions and Virus Particle Assembly. J Virol 92:
Wang, Mingzhang; Lu, Manman; Fritz, Matthew P et al. (2018) Fast Magic-Angle Spinning 19 F?NMR Spectroscopy of HIV-1 Capsid Protein Assemblies. Angew Chem Int Ed Engl 57:16375-16379
Paramasivam, Sivakumar; Gronenborn, Angela M; Polenova, Tatyana (2018) Backbone amide 15N chemical shift tensors report on hydrogen bonding interactions in proteins: A magic angle spinning NMR study. Solid State Nucl Magn Reson 92:1-6
Fritz, Matthew; Quinn, Caitlin M; Wang, Mingzhang et al. (2018) Determination of accurate backbone chemical shift tensors in microcrystalline proteins by integrating MAS NMR and QM/MM. Phys Chem Chem Phys 20:9543-9553
Quinn, Caitlin M; Wang, Mingzhang; Fritz, Matthew P et al. (2018) Dynamic regulation of HIV-1 capsid interaction with the restriction factor TRIM5? identified by magic-angle spinning NMR and molecular dynamics simulations. Proc Natl Acad Sci U S A 115:11519-11524
Varlakhanova, Natalia V; Alvarez, Frances J D; Brady, Tyler M et al. (2018) Structures of the fungal dynamin-related protein Vps1 reveal a unique, open helical architecture. J Cell Biol 217:3608-3624

Showing the most recent 10 out of 144 publications