This application seeks competitive renewal of the NIGMS-supported New Mexico Center for the Spatiotemporal Modeling of Cell Signaling (Spatiotemporal Modeling Center; STMC). Our Center focuses remarkable strengths in biology, technology, modeling and simulation on understanding how the spatial proximity, dynamics, interactions and trafficking of membrane receptors and signaling proteins together determine the outcome of signal transduction networks. Research foci include the ITAM family of immunoreceptors, particularly the high affinity IgE receptor (Fc?RI) that is responsible for triggering both the symptoms and progression of allergic inflammation. The innate immune receptor, Dectin-1, bears a truncated ?hemITAM? and its novel signaling control will be studied in detail over the renewal period. STMC researchers also specialize in the EGFR and other receptor tyrosine kinases. A major focus in this proposal is the unusual cross-talk between EGFR/erbB receptors and the Met/Ron family ? and their complex control of carcinogenesis and metastasis. The experimental teams will quantify the distributions, mobility, interactions and post-translational modifications of receptors and adaptors that mediate both signaling and trafficking after exposure to ligand. Each research project is highly integrated with respect to experimental and mathematical modeling components. Computational specialists in the STMC?s Modeling and Bioinformatics Core include pioneers in the field of rule-based modeling approaches, which are applied to develop mechanistic kinetic models and to implement powerful spatial stochastic platforms that consider the contribution of the membrane landscape to receptor signaling. In vivo and in silico tumor models will provide insights into the mechanisms by which the erbB and Met receptors control responses to targeted therapies. Multiple new technologies will be deployed within the projects, including real-time confocal and hyper-spectral microscopy with quantum dot- tagged ligands to track receptor distributions and interactions in live cells, novel TIRF imaging assays on live cells, photo-bleaching protocols that quantify protein-protein reaction kinetics, and novel microfluidic devices to image events in rare primary cells and quantify the release of mediators. The STMC community is supported by strong cores. The STMC Super-resolution and Image Analysis Core provides new instrumentation and probes to access protein-protein dynamics at the 10 nm scale and is dedicated to the improved analysis and cross-platform integration of image data, as well as the archiving and sharing of both image and biochemical data, and the broad dissemination of data, code and models. The STMC Training and Outreach Core provides exceptional opportunities for young biomedical, mathematical, statistical, physical and computational scientists, as well as engineers and physicians, to build exciting and productive careers with potential to impact human health. The STMC Administration Core maximizes the ability of center members to conduct innovative science and will continue to support our aspiration to serve as a national model for diversity in Systems Biology through the continued recruitment and advancement of women and minorities.

Public Health Relevance

The New Mexico Center for Spatiotemporal Modeling unites an interdisciplinary group of experimentalists, computational biologists and engineers to focus on the mechanisms of cellular signal transduction. Our model systems represents important problems in immunology, such as the methods by which allergens trigger release of inflammatory mediators. In the field of cancer, we focus on receptors that control cancers of the colon and ovary. We specifically seek insight into the ways that these cancers ?escape? current targeted therapies, which should led to better drug combinations.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of New Mexico Health Sciences Center
United States
Zip Code
Graus, Matthew S; Wester, Michael J; Lowman, Douglas W et al. (2018) Mannan Molecular Substructures Control Nanoscale Glucan Exposure in Candida. Cell Rep 24:2432-2442.e5
Bearer, Elaine L; Manifold-Wheeler, Brett C; Medina, Christopher S et al. (2018) Alterations of functional circuitry in aging brain and the impact of mutated APP expression. Neurobiol Aging 70:276-290
Freeman, Spencer A; Vega, Anthony; Riedl, Magdalena et al. (2018) Transmembrane Pickets Connect Cyto- and Pericellular Skeletons Forming Barriers to Receptor Engagement. Cell 172:305-317.e10
Hatch, Ellen W; Geeze, Mary Beth; Martin, Cheyenne et al. (2018) Variability of PD-L1 expression in mastocytosis. Blood Adv 2:189-199
Tasnim, Humayra; Fricke, G Matthew; Byrum, Janie R et al. (2018) Quantitative Measurement of Naïve T Cell Association With Dendritic Cells, FRCs, and Blood Vessels in Lymph Nodes. Front Immunol 9:1571
Travers, Timothy; López, Cesar A; Van, Que N et al. (2018) Molecular recognition of RAS/RAF complex at the membrane: Role of RAF cysteine-rich domain. Sci Rep 8:8461
Suderman, Ryan; Mitra, Eshan D; Lin, Yen Ting et al. (2018) Generalizing Gillespie's Direct Method to Enable Network-Free Simulations. Bull Math Biol :
Pallikkuth, Sandeep; Martin, Cheyenne; Farzam, Farzin et al. (2018) Sequential super-resolution imaging using DNA strand displacement. PLoS One 13:e0203291
López, Cesar A; Unkefer, Clifford J; Swanson, Basil I et al. (2018) Membrane perturbing properties of toxin mycolactone from Mycobacterium ulcerans. PLoS Comput Biol 14:e1005972
Peretti, Amanda S; Dominguez, Dayna; Grimes, Martha M et al. (2018) The R-Enantiomer of Ketorolac Delays Mammary Tumor Development in Mouse Mammary Tumor Virus-Polyoma Middle T Antigen (MMTV-PyMT) Mice. Am J Pathol 188:515-524

Showing the most recent 10 out of 144 publications