Absorption, distribution, metabolism and elimination (collectively called pharmacokinetics, PK), and time-dependent drug actions in target organs (pharmacodynamics, PD) play critical roles in efficacy and toxicity of all drugs. We will develop and implement new methods for modeling PK-PD at multiple scales from cells to patients, new methods for measuring PK at the cellular and subcellular levels, and new cell culture systems that better mimic the tumor environment, thus increasing our ability to predict patient responses from cell culture data. Our translational goal is to create new single-cell resolution methods to integrate a molecular understanding of drug-target interaction with measures of target engagement and induction of drug response in tissues and organisms.
Aim 3. 1 involves technology development for sub-cellular resolution PK measurement by fluorescence imaging of Companion Imaging Drugs (CIDs), small molecule or protein drugs tagged with a fluorophore for imaging in a manner that retains the bioactivity and pharmacokinetics of the parent compound. The properties of CIDs will be optimized (Aim 3.1.1) and the compounds used for intravital imaging of drug distribution and response in living mice (Aim 3.1.2). CIDs will be used to directly assay drug-target interaction in single cells by fluorescence correlation microscopy (Aim 3.1.3).
Aim 3. 2 will develop a novel quantitative, multiplexed mass spectrometry method for assaying structure-activity relationships at a cellular and sub-cellular level based on covalent modification of target proteins. This will involve creation of novel chemical drug-like probes (Aim 3.2.1) that will then be subjected to systematic chemical modification to explore the impact of physic0-chemical properties such as cLogP, pKa etc.
(Aim 3. 2.2).
Aim 3. 3 will involve development of methods for integrating pathway-level knowledge and biomarkers (both predictive and response) into the kind of PK-PD models that are routinely used for translational pharmacology and clinical trial design in industry.
Aim 3. 4 will attempt to recreate key features of the tumor microenvironment in culture to increase the predictivity of cell culture models. This will involve reproducing time-varying drug exposure as observed in animals and patients (Aim 3.4.1), systematic variation of the soluble environment (Aim 3.4.2), manipulation of the physical environment through changes in substrate elasticity (Aim 3.4.3) and direct assessment of the relationship between drug response in culture and patients across all the data collected Aims 1-3.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard Medical School
United States
Zip Code
Libby, Peter; Loscalzo, Joseph; Ridker, Paul M et al. (2018) Inflammation, Immunity, and Infection in Atherothrombosis: JACC Review Topic of the Week. J Am Coll Cardiol 72:2071-2081
Yang, Jia-Shu; Hsu, Jia-Wei; Park, Seung-Yeol et al. (2018) GAPDH inhibits intracellular pathways during starvation for cellular energy homeostasis. Nature 561:263-267
Jones, Douglas S; Jenney, Anne P; Joughin, Brian A et al. (2018) Inflammatory but not mitogenic contexts prime synovial fibroblasts for compensatory signaling responses to p38 inhibition. Sci Signal 11:
Reyes, José; Chen, Jia-Yun; Stewart-Ornstein, Jacob et al. (2018) Fluctuations in p53 Signaling Allow Escape from Cell-Cycle Arrest. Mol Cell 71:581-591.e5
Lin, Jia-Ren; Izar, Benjamin; Wang, Shu et al. (2018) Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. Elife 7:
Arbelle, Assaf; Reyes, Jose; Chen, Jia-Yun et al. (2018) A probabilistic approach to joint cell tracking and segmentation in high-throughput microscopy videos. Med Image Anal 47:140-152
Schlotter, Florian; Halu, Arda; Goto, Shinji et al. (2018) Spatiotemporal Multi-Omics Mapping Generates a Molecular Atlas of the Aortic Valve and Reveals Networks Driving Disease. Circulation 138:377-393
Coy, Shannon; Rashid, Rumana; Lin, Jia-Ren et al. (2018) Multiplexed immunofluorescence reveals potential PD-1/PD-L1 pathway vulnerabilities in craniopharyngioma. Neuro Oncol 20:1101-1112
Cranford, Jonathan P; O'Hara, Thomas J; Villongco, Christopher T et al. (2018) Efficient Computational Modeling of Human Ventricular Activation and Its Electrocardiographic Representation: A Sensitivity Study. Cardiovasc Eng Technol 9:447-467
Iglesias, Nahid; Currie, Mark A; Jih, Gloria et al. (2018) Automethylation-induced conformational switch in Clr4 (Suv39h) maintains epigenetic stability. Nature 560:504-508

Showing the most recent 10 out of 77 publications