? PROJECT 1 Acute lymphoblastic leukemia (ALL) is the commonest childhood tumor and an important cause of morbidity and mortality from hematopoietic malignancies in adults. ALL is a paradigm for chemotherapy-responsive human cancers. Due to decades of large scale clinical trials, and the ability to obtain tumor material prior to and during therapy, childhood ALL treatment has helped to establish the importance of characterizing somatic genetic alterations and measurement of early treatment response (minimal residual disease, MRD) as the two strongest predictors of ALL outcomes. Importantly, many drugs used to treat ALL, e.g. glucocorticoids, methotrexate, and thiopurines, are used for a range of malignant and non-malignant conditions, and are associated with short and long-term toxicities that limit escalation of dose intensity to improve treatment outcomes. New treatment approaches based on rational targets and tailored to individual patients, are required to further improve treatment outcomes in ALL. In the last decade, genome wide profiling has transformed understanding of the genetic basis of ALL, identified new ALL subtypes, defined the inherited and somatic genetic alterations that define each subtype, and importantly, highlighted specific genomic alterations that may be used for initial diagnosis, refinement of risk stratification, and the development of targeted therapeutic approaches. However, the majority of these data have been derived from childhood ALL cohorts, and the genetic basis of ALL in adults, which has an inferior outcome, is poorly understood. The goal of this project is to perform a large-scale, integrated genomic, transcriptomic and epigenomic analysis of childhood and adult ALL, to comprehensively define the genomic landscape of ALL and identify features associated with treatment response (MRD) and outcome.
Aim 1 will define the landscape of somatic genetic alterations of over 1900 cases of childhood and adult ALL, drawn from clinical trials that include ascertainment of clinical features, to identify associations of individual features with MRD and outcome. These studies will identify sequence alterations using exome and transcriptome sequencing, gene rearrangements, gene expression and mutation expression by RNA-sequencing, structural genetic alterations by single nucleotide polymorphism (SNP) arrays, and cytosine methylation profiling using methylation arrays (Cores B and C).
Aim 2 uses SNP microarrays of germline (non-tumor) samples of over 900 adult and 6600 childhood ALL cases, with 1900 patients overlapping with Aim 1, to perform genome wide association studies (GWAS) to identify inherited variants associated with MRD and with outcome in children and adults.
In Aim 3, we will perform an integrated analysis of inherited and somatic genetic features with outcome and MRD, incorporating the univariable analyses of specific genetic alterations identified in Aims 1 and 2 to test agnostic cross-platform genome-wide approaches to identify predictors of outcome. These integrated ?omic predictors will be combined with those identified in Projects 2 and 3 to build a comprehensive model of precision medicine approaches in Core C.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
1P50GM115279-01
Application #
8933502
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
1
Fiscal Year
2015
Total Cost
Indirect Cost
Name
St. Jude Children's Research Hospital
Department
Type
DUNS #
067717892
City
Memphis
State
TN
Country
United States
Zip Code
38105
Nishii, Rina; Moriyama, Takaya; Janke, Laura J et al. (2018) Preclinical evaluation of NUDT15-guided thiopurine therapy and its effects on toxicity and antileukemic efficacy. Blood 131:2466-2474
Pui, Ching-Hon; Liu, Yiwei; Relling, Mary V (2018) How to solve the problem of hypersensitivity to asparaginase? Pediatr Blood Cancer 65:
Zhang, Yingchi; Gao, Yufeng; Zhang, Hui et al. (2018) PDGFRB mutation and tyrosine kinase inhibitor resistance in Ph-like acute lymphoblastic leukemia. Blood 131:2256-2261
Gupta, Sumit; Devidas, Meenakshi; Loh, Mignon L et al. (2018) Flow-cytometric vs. -morphologic assessment of remission in childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group (COG). Leukemia 32:1370-1379
Steeghs, Elisabeth M P; Bakker, Marjolein; Hoogkamer, Alex Q et al. (2018) High STAP1 expression in DUX4-rearranged cases is not suitable as therapeutic target in pediatric B-cell precursor acute lymphoblastic leukemia. Sci Rep 8:693
Diouf, Barthelemy; Lin, Wenwei; Goktug, Asli et al. (2018) Alteration of RNA Splicing by Small-Molecule Inhibitors of the Interaction between NHP2L1 and U4. SLAS Discov 23:164-173
Pui, Ching-Hon (2018) To delay or not to delay, that is the question for patients with acute lymphoblastic leukemia who do not receive prophylactic cranial irradiation. Cancer 124:4442-4446
Churchman, Michelle L; Qian, Maoxiang; Te Kronnie, Geertruy et al. (2018) Germline Genetic IKZF1 Variation and Predisposition to Childhood Acute Lymphoblastic Leukemia. Cancer Cell 33:937-948.e8
Browne, Emily K; Zhou, Yinmei; Chemaitilly, Wassim et al. (2018) Changes in body mass index, height, and weight in children during and after therapy for acute lymphoblastic leukemia. Cancer 124:4248-4259
Diouf, Barthelemy; Evans, William E (2018) Pharmacogenomics of Vincristine-Induced Peripheral Neuropathy: Progress Continues. Clin Pharmacol Ther :

Showing the most recent 10 out of 72 publications