Androgens and obesity-related metabolic factors, such as free fatty acids (FFAs), are critical regulators of the reproductive axis. Along with the emerging epidemic of obesity, negative impacts of high adiposity on the female reproductive axis are becoming evident. In addition, women affected with Polycystic Ovary Syndrome (PCOS), the most common reproductive disorder in reproductive-aged women, experience hyperandrogenism and metabolic features including obesity. Evidence indicates that the gonadotropin luteinizing hormone (LH) is suppressed in high body mass individuals relative to lean women, and this is true in both normal women and women with PCOS. Recent work has also revealed, in both normal and PCOS women, a paradox in the association of elevated LH levels with elevated testosterone, despite the well-recognized role of testosterone in suppressing the reproductive neuroendocrine axis. Interestingly, androgen appears to influence both the hypothalamic reproductive circuits, dictating the pace of LH secretion, as well as pituitary gonadotrope responsiveness to incoming GnRH pulses, suggesting a complex regulation of LH secretion patterns. The overall goal of Project II is to investigate the impact of FFA and androgen on the female reproductive neuroendocrine axis, either individually or in combination, in both normal and PCOS-like conditions.
In Aim 1, we will elucidate how FFAs alter in vivo LH pulse dynamics as well as the pituitary LH response to GnRH pulses. We hypothesize that FFA induce cell stress in gonadotropes and alter hypothalamic pulsatility and gonadotrope responses to GnRH. We will test the impact of acute and chronic exposure to a panel of FFAs on GnRH pulsatility and pituitary sensitivity to GnRH in vivo and in vitro, using new models of GnRH challenge and perifusion pituitary culture.
In Aim 2, we will test how androgens alter LH pulse generation and the in vivo pituitary response to GnRH in females. We will assess the effects of in vivo DHT treatment on both pulsatile LH secretion and pituitary responsiveness to GnRH pulses, and use Cre-lox technology to determine in what specific neuroendocrine cell- types androgens act to alter LH pulses in vivo.
In Aim 3, we will examine the combined interaction of FFA and androgens in normal females and in a mouse model of PCOS. We will determine how LH pulsatility and the gonadotrope response to GnRH pulses are altered in the face of both elevated androgens and FFAs. Because PCOS women have elevated androgens and FFAs, but paradoxically also exhibit rapid, high LH pulses, we will use a novel mouse model of PCOS to investigate the interaction of androgens and obesity on LH pulse pattern and secretion in PCOS-like conditions. We will then assess gene expression changes specifically in Kiss1 and gonadotrope cells in a PCOS mouse model and compare these changes with those induced individually by androgen, FFA, or high BMI alone. Together, these Aims will delineate the mechanisms by which androgens and FFAs regulate LH pulsatile secretion and contribute to PCOS, providing novel insight for diagnosis and treatment of female infertility.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Specialized Center (P50)
Project #
5P50HD012303-37
Application #
9675119
Study Section
Special Emphasis Panel (ZHD1)
Project Start
Project End
Budget Start
2019-04-01
Budget End
2020-03-31
Support Year
37
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of California, San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Pandolfi, Erica C; Hoffmann, Hanne M; Schoeller, Erica L et al. (2018) Haploinsufficiency of SIX3 Abolishes Male Reproductive Behavior Through Disrupted Olfactory Development, and Impairs Female Fertility Through Disrupted GnRH Neuron Migration. Mol Neurobiol 55:8709-8727
Stephens, Shannon B Z; Di Giorgio, Noelia P; Liaw, Reanna B et al. (2018) Estradiol-Dependent and -Independent Stimulation of Kiss1 Expression in the Amygdala, BNST, and Lateral Septum of Mice. Endocrinology 159:3389-3402
Ryan, Genevieve E; Malik, Shaddy; Mellon, Pamela L (2018) Antiandrogen Treatment Ameliorates Reproductive and Metabolic Phenotypes in the Letrozole-Induced Mouse Model of PCOS. Endocrinology 159:1734-1747
Torres, Pedro J; Siakowska, Martyna; Banaszewska, Beata et al. (2018) Gut Microbial Diversity in Women With Polycystic Ovary Syndrome Correlates With Hyperandrogenism. J Clin Endocrinol Metab 103:1502-1511
Hoffmann, Hanne M; Gong, Ping; Tamrazian, Anika et al. (2018) Transcriptional interaction between cFOS and the homeodomain-binding transcription factor VAX1 on the GnRH promoter controls Gnrh1 expression levels in a GnRH neuron maturation specific manner. Mol Cell Endocrinol 461:143-154
Belli, Martina; Shimasaki, Shunichi (2018) Molecular Aspects and Clinical Relevance of GDF9 and BMP15 in Ovarian Function. Vitam Horm 107:317-348
Yang, Jennifer A; Hughes, Jessica K; Parra, Ruby A et al. (2018) Stress rapidly suppresses in vivo LH pulses and increases activation of RFRP-3 neurons in male mice J Endocrinol 239:339-350
Hoffmann, Hanne; Pandolfi, Erica; Larder, Rachel et al. (2018) Haploinsufficiency of Homeodomain Proteins Six3, Vax1, and Otx2, Causes Subfertility in Mice Via Distinct Mechanisms. Neuroendocrinology :
Belli, Martina; Iwata, Nahoko; Nakamura, Tomoko et al. (2018) FOXL2C134W-Induced CYP19 Expression via Cooperation With SMAD3 in HGrC1 Cells. Endocrinology 159:1690-1703
Que, Xuchu; Hung, Ming-Yow; Yeang, Calvin et al. (2018) Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 558:301-306

Showing the most recent 10 out of 217 publications