Studies demonstrating that free radical scavengers prevent postischemic injury have provided evidence for a free radical mechanism of reperfusion injury. Using Electron Paramagnetic Resonance (EPR) techniques we have been able to demonstrate a burst of oxygen free radical generation during the early minutes of postischemic reperfusion. Endothelial cells have been shown to be important sources of this radical generation and leukocytes, in the presence of complement factors, have been shown to further amplify radical generation and injury. The nitric oxide radical, NO, is a potent vasodilator and it has been suggested that oxygen radicals decrease postischemic vascular reactivity by decreasing NO. EPR techniques have been developed enabling direct measurement and quantitation of NO in the heart and coronary effluent. This project has the following four specific aims. 1) To determine the cellular mechanisms of free radical generation in reoxygenated endothelial cells and leukocytes. EPR spin trapping techniques will be used to quantitate and characterize free radical generation, and trypan blue exclusion along with electron microscopy to assess cell injury. 2) To directly measure NO production in th normal and postischemic heart and determine the role of oxygen free radical generation in the pathogenesis of endothelial dysfunction. EPR measurements of NO- myoglobin formation in myocardial tissue will be performed. EPR and spectrophotometric measurements of NO in the coronary effluent will be performed via methemoglobin production or direct trapping by the Fe(II)- DETC complex, and correlated with measurements of vascular reactivity and contractile function. 3) To determine the effect of oxygen radicals, and NO on PMN and endothelial adhesion molecules. Fluorescence flow cytometry and functional adhesion assays will be performed in isolated cells and hearts to determine the effects of oxygen free radicals and NO on adhesion molecule expression. EPR techniques will be used to measure radical generation and immunohistochemistry to localize the observed effects in myocardial tissue. 4) To determine if free radicals directly or indirectly activate the complement pathway in the postischemic heart. Complement activation will be determined by measuring consumption of functionally active C3 and C5, radioimmunoassay for the generation of C3a and C5a, as well as by immunohistochemical studies of complement attack complex deposition. EPR techniques will be used to measure exogenous or endogenous free radical generation. Overall this project is designed to determine the basic cellular and molecular mechanisms of free radical mediated reperfusion injury as well as to provide insight regarding optimal strategies for preventing this injury.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center (P50)
Project #
5P50HL052315-04
Application #
6272965
Study Section
Project Start
1998-01-01
Project End
1998-12-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
4
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
045911138
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Ferlito, Marcella; Fulton, William B; Zauher, Mohamed A et al. (2010) VAMP-1, VAMP-2, and syntaxin-4 regulate ANP release from cardiac myocytes. J Mol Cell Cardiol 49:791-800
Morrell, Craig N; Sun, Henry; Ikeda, Masahiro et al. (2008) Glutamate mediates platelet activation through the AMPA receptor. J Exp Med 205:575-84
Hillenbrand, Hanns B; Becker, Lewis C; Kharrazian, Reza et al. (2005) 23Na MRI combined with contrast-enhanced 1H MRI provides in vivo characterization of infarct healing. Magn Reson Med 53:843-50
Lopez-Ongil, S; Saura, M; Zaragoza, C et al. (2002) Hydrogen peroxide regulation of bovine endothelin-converting enzyme-1. Free Radic Biol Med 32:406-13
Seshiah, Puvi N; Kereiakes, Dean J; Vasudevan, Sanjay S et al. (2002) Activated monocytes induce smooth muscle cell death: role of macrophage colony-stimulating factor and cell contact. Circulation 105:174-80
Fan, Haiying; Sun, Baogui; Gu, Qiuping et al. (2002) Oxygen radicals trigger activation of NF-kappaB and AP-1 and upregulation of ICAM-1 in reperfused canine heart. Am J Physiol Heart Circ Physiol 282:H1778-86
Tendler, D S; Bao, C; Wang, T et al. (2001) Intersection of interferon and hypoxia signal transduction pathways in nitric oxide-induced tumor apoptosis. Cancer Res 61:3682-8
Duilio, C; Ambrosio, G; Kuppusamy, P et al. (2001) Neutrophils are primary source of O2 radicals during reperfusion after prolonged myocardial ischemia. Am J Physiol Heart Circ Physiol 280:H2649-57
Gerber, B L; Rochitte, C E; Bluemke, D A et al. (2001) Relation between Gd-DTPA contrast enhancement and regional inotropic response in the periphery and center of myocardial infarction. Circulation 104:998-1004
Boudoulas, K D; Cooke, G E; Roos, C M et al. (2001) The PlA polymorphism of glycoprotein IIIa functions as a modifier for the effect of estrogen on platelet aggregation. Arch Pathol Lab Med 125:112-5

Showing the most recent 10 out of 84 publications