The long-term goals of this project are to understand the molecular basis of channel dysfunction caused by mutations in ion channel genes that cause cardiac arrhythmia, and to explore potential therapies at the cellular and organ level based on these findings. Subproject 1 will explore the mechanism of action and normalization of cardiac repolarization by an activator of KvLGT1 and cardiac I/Ks channels. A novel benzodiazepine (R-L3) was recently discovered that increases the magnitude of I/Ks and shortens action potential duration. We will study the effects of this compound on KvLGT1 and minK channel subunits heterologously expressed in Xenopus oocytes. We will also determine if this compound can suppress early after depolarizations in rabbit myocytes and prevent torsades de pointes in isolated perfused hearts. Subproject 2 will investigate the biophysical properties of mutations in SCN5A that cause long QT syndrome and idiopathic ventricular fibrillation. Gating and ionic currents recorded from sodium channels heterologously expressed in cultured mammalian cells will be used to understand abnormal channel function of SCN5A mutations. Subproject 3 will characterize mutations in HERG and newly discovered genes that cause long QT syndrome that are identified in Project 1. These studies will utilize both the oocyte and cultured mammalian cell expression systems. We will initially concentrate on mutations in HERG that will provide insights into the structural basis of channel function.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center (P50)
Project #
5P50HL052338-08
Application #
6576586
Study Section
Project Start
2002-01-01
Project End
2002-12-31
Budget Start
Budget End
Support Year
8
Fiscal Year
2002
Total Cost
$206,722
Indirect Cost
Name
University of Utah
Department
Type
DUNS #
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Lux, Robert L; Gettes, Leonard S (2011) Repolarization heterogeneity and rate dependency in a canine rapid pacing model of heart failure. J Electrocardiol 44:730-5
Lux, Robert L; Pope 3rd, C Arden (2009) Air pollution effects on ventricular repolarization. Res Rep Health Eff Inst :3-20; discussion 21-8
Segerson, Nathan M; Litwin, Sheldon E; Daccarett, Marcos et al. (2008) Scatter in repolarization timing predicts clinical events in post-myocardial infarction patients. Heart Rhythm 5:208-14
Valencik, Maria L; Zhang, Dongfang; Punske, Bonnie et al. (2006) Integrin activation in the heart: a link between electrical and contractile dysfunction? Circ Res 99:1403-10
Lux, Robert L; Gettes, Leonard S; Mason, Jay W (2006) Understanding proarrhythmic potential in therapeutic drug development: alternate strategies for measuring and tracking repolarization. J Electrocardiol 39:S161-4
Spitzer, Kenneth W; Pollard, Andrew E; Yang, Lin et al. (2006) Cell-to-cell electrical interactions during early and late repolarization. J Cardiovasc Electrophysiol 17 Suppl 1:S8-S14
Splawski, Igor; Yoo, Dana S; Stotz, Stephanie C et al. (2006) CACNA1H mutations in autism spectrum disorders. J Biol Chem 281:22085-91
Shusterman, Vladimir; Goldberg, Anna; London, Barry (2006) Upsurge in T-wave alternans and nonalternating repolarization instability precedes spontaneous initiation of ventricular tachyarrhythmias in humans. Circulation 113:2880-7
Skaluba, Stanislaw J; Bray, Bruce E; Litwin, Sheldon E (2005) Close coupling of systolic and diastolic function: combined assessment provides superior prediction of exercise capacity. J Card Fail 11:516-22
Chen, Tiehua; Inoue, Masashi; Sheets, Michael F (2005) Reduced voltage dependence of inactivation in the SCN5A sodium channel mutation delF1617. Am J Physiol Heart Circ Physiol 288:H2666-76

Showing the most recent 10 out of 92 publications