Gene replacement therapy of congenital bone marrow disorders is a long sought treatment goal and a great challenge to experimental hematology. In this project we focus on gene replacement for Fanconi Anemia and Diamond Blackfan Anemia. Both diseases require successful gene insertion and function in hematopoietic stem cells (HSC) and their progeny. Successful gene transfer into HSC requires selection of transfected and functioning HSC by the host. This will occur in Fanconi Anemia because HSC lacking the Fanconi gene die in the marrow. In Diamond Blackfan Anemia, the selection occurs at the level of the erythroid progenitor and precursor cells. We will use two classes of retrovirus vectors; moloney leukemia based vectors and HIV based lentivirus vectors. These will be tested in vitro and in two in vivo models; the NOD SCID mouse and in rhesus monkey. We have shown that it is imperative to utilize short incubations preferably in cold temperatures in order to protect the HSC from toxicity induced by the procedures themselves. These new incubation conditions will be tested in the experimental models. Appropriate vectors will be produced at very high concentrations in our GMP vector laboratory and the scale up to large human samples will be carried out in our GMP cell manipulation core laboratory.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center (P50)
Project #
2P50HL054785-06
Application #
6358511
Study Section
Project Start
2000-11-01
Project End
2001-08-31
Budget Start
Budget End
Support Year
6
Fiscal Year
2000
Total Cost
$284,242
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
149617367
City
Boston
State
MA
Country
United States
Zip Code
02215
Huang, Min; Kennedy, Richard; Ali, Abdullah M et al. (2011) Human MutS and FANCM complexes function as redundant DNA damage sensors in the Fanconi Anemia pathway. DNA Repair (Amst) 10:1203-12
Kee, Younghoon; Kim, Jung Min; D'Andrea, Alan D et al. (2009) Regulated degradation of FANCM in the Fanconi anemia pathway during mitosis. Genes Dev 23:555-60
Chen, Clark C; Kennedy, Richard D; Sidi, Samuel et al. (2009) CHK1 inhibition as a strategy for targeting Fanconi Anemia (FA) DNA repair pathway deficient tumors. Mol Cancer 8:24
Mirchandani, Kanchan D; McCaffrey, Ryan M; D'Andrea, Alan D (2008) The Fanconi anemia core complex is required for efficient point mutagenesis and Rev1 foci assembly. DNA Repair (Amst) 7:902-11
Davies, Jeff K; Gribben, John G; Brennan, Lisa L et al. (2008) Outcome of alloanergized haploidentical bone marrow transplantation after ex vivo costimulatory blockade: results of 2 phase 1 studies. Blood 112:2232-41
Ansen, Sascha; Butler, Marcus O; Berezovskaya, Alla et al. (2008) Dissociation of its opposing immunologic effects is critical for the optimization of antitumor CD8+ T-cell responses induced by interleukin 21. Clin Cancer Res 14:6125-36
Kennedy, Richard D; Chen, Clark C; Stuckert, Patricia et al. (2007) Fanconi anemia pathway-deficient tumor cells are hypersensitive to inhibition of ataxia telangiectasia mutated. J Clin Invest 117:1440-9
Butler, Marcus O; Lee, Jeng-Shin; Ansen, Sascha et al. (2007) Long-lived antitumor CD8+ lymphocytes for adoptive therapy generated using an artificial antigen-presenting cell. Clin Cancer Res 13:1857-67
Li, Xing; Gold, Bert; O'hUigin, Colm et al. (2007) Unique features of TRIM5alpha among closely related human TRIM family members. Virology 360:419-33
Wang, Xiaozhe; Kennedy, Richard D; Ray, Kallol et al. (2007) Chk1-mediated phosphorylation of FANCE is required for the Fanconi anemia/BRCA pathway. Mol Cell Biol 27:3098-108

Showing the most recent 10 out of 88 publications