This project will focus on the role of leukocyte integrins in the development of airway inflammation and hyperresponsiveness. Integrins were originally identified because of their ability to mediate cell adhesion, but it is now clear that they also play major roles in determining how a cell responds to its environment. Systemic or aerosol administration of anti-integrin antibodies inhibits airway inflammation and hyperresponsiveness in several animal models. In many cases, these effects cannot be accounted for by a direct blockade of integrin-mediated recruitment of leukocytes from the blood into the airways. In vitro evidence obtained using purified blood leukocytes and cultured cell lines strongly suggests that many in vivo effects of anti-integrin antibodies are instead accounted for by alterations in integrin-mediated signaling pathways involved in the regulation of leukocyte activation, cytokine production, and mediator release. The goal of this project is to analyze the importance of these mechanisms in the ovalbumin-allergic mouse model using both in vitro and in vivo approaches. Preliminary experiments conducted in collaboration with other SCOR investigators have analyzed leukocyte recruitment, integrin and integrin ligand expression, cytokine production, mediator release, and airway responsiveness in this model. The results indicate that the model resembles asthma in several important respects. The project has three specific aims: (A) To analyze how beta-2 and alpha-4 integrins modulate the activation of pulmonary T cells, eosinophils, and macrophages in vitro; (B) To analyze the effects of anti- integrin and anti-ligand antibodies on mediator and cytokine release from lung fragments; and (C) To analyze the effects of in vivo administration of anti-integrin and anti-ligand antibodies on inflammation, cytokine production, mediator release, and airway hyperresponsiveness. These studies address fundamental questions about the role of leukocyte integrins in the development and persistence of airway inflammation and hyperresponsiveness, and will help to provide a rational basis for the development of systemic or inhaled integrin antagonists for the treatment of asthma.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center (P50)
Project #
5P50HL056385-04
Application #
6202482
Study Section
Project Start
1999-09-30
Project End
2000-08-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
4
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
073133571
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Jia, Guiquan; Erickson, Richard W; Choy, David F et al. (2012) Periostin is a systemic biomarker of eosinophilic airway inflammation in asthmatic patients. J Allergy Clin Immunol 130:647-654.e10
Choy, David F; Modrek, Barmak; Abbas, Alexander R et al. (2011) Gene expression patterns of Th2 inflammation and intercellular communication in asthmatic airways. J Immunol 186:1861-9
Woodruff, Prescott G; Modrek, Barmak; Choy, David F et al. (2009) T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med 180:388-95
Voehringer, David; Stanley, Sarah A; Cox, Jeffery S et al. (2007) Nippostrongylus brasiliensis: identification of intelectin-1 and -2 as Stat6-dependent genes expressed in lung and intestine during infection. Exp Parasitol 116:458-66
Atabai, Kamran; Sheppard, Dean; Werb, Zena (2007) Roles of the innate immune system in mammary gland remodeling during involution. J Mammary Gland Biol Neoplasia 12:37-45
Woodruff, Prescott G; Dolganov, Gregory M; Ferrando, Ronald E et al. (2004) Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression. Am J Respir Crit Care Med 169:1001-6
Fahy, John V (2002) Goblet cell and mucin gene abnormalities in asthma. Chest 122:320S-326S
Ordonez, C L; Khashayar, R; Wong, H H et al. (2001) Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am J Respir Crit Care Med 163:517-23
Fahy, J V (2001) Remodeling of the airway epithelium in asthma. Am J Respir Crit Care Med 164:S46-51
Ford, J G; Rennick, D; Donaldson, D D et al. (2001) Il-13 and IFN-gamma: interactions in lung inflammation. J Immunol 167:1769-77

Showing the most recent 10 out of 12 publications