Patients with persistent pulmonary hypertension of newborn exhibit pulmonary vascular smooth muscle (PVSM) cell hyperplasia, enhanced vascular tone, and increased accumulation of extracellular matrix (ECM) components in their lung vessels. This proposal is based on the hypothesis that in ECM may contribute to the etiology of this disease by regulating PVSM cell contractility and growth in response to soluble vasoregulators. This concept is based on the recent finding that ECM molecules control the ~set point~ of intracellular chemical signaling pathways (e.g., Na +/H + exchange, phosphoinositide turnover, cGMP levels) which are used by soluble vasoconstrictors (e.g., endothelin-1, PDGF) and vasorelaxants (e.g., nitric oxide) to alter PVSM cell contractility and growth. PVSM cells will be cultured in chemically- defined medium on dishes that are coated with different densities of purified ECM molecules (e.g., fibronectin, laminin, different collagen types, synthetic RGD-containing peptides) or ECM-coated microbeads to vary cell-ECM contact formation and integrin binding in a controlled manner. ECM-dependent control of vasomotor tone (cytoskeletal stiffness) in the presence or absence of different vasoconstrictors and vasodilators will be measured directly in cultured PVSM cells using magnetic twisting cytometry. Results of these studies will be compared and contrasted with effects on DNA synthesis and on intracellular signaling pathways (e.g., Na +/H + exchange, inositol lipid synthesis and breakdown, Ca2+ release, cGMP levels, myosin light chain kinase activation, myosin phosphorylation, protein tyrosine kinase activation). Anti-integrin antibodies and synthetic peptides will be used to map out specific paths of transmembrane signaling and to determine the importance of specific integrin receptors during control of vasoconstriction versus growth. Immunofluorescence microscopy will be used to identify changes in the distribution of signaling molecules and their recruitment to the site of integrin binding within the focal adhesion complex in response to varying cell-ECM contact formation and addition of vasoactive agents. Finally, a newly developed method for isolating biochemically active focal adhesion complexes will be used to study how signals transmitted by integrins and receptors for vasoconstrictors integrate inside the cell. Studies also will be initiated to explore the utility of integrin antagonists as inhibitors of pulmonary vascular remodeling in vivo. In summary, we hope to better understand how pulmonary hypertension may develop in response to neonatal injury and to develop new approaches for treatment of this disease by characterizing the mechanism by which ECM regulates signal transduction and hence, controls PVSM cell growth and contractile responses.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center (P50)
Project #
1P50HL056398-02
Application #
6273191
Study Section
Project Start
1998-02-01
Project End
1998-11-30
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
2
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Elenius, Varpu; Gotte, Martin; Reizes, Ofer et al. (2004) Inhibition by the soluble syndecan-1 ectodomains delays wound repair in mice overexpressing syndecan-1. J Biol Chem 279:41928-35
Van Marter, Linda J; Dammann, Olaf; Allred, Elizabeth N et al. (2002) Chorioamnionitis, mechanical ventilation, and postnatal sepsis as modulators of chronic lung disease in preterm infants. J Pediatr 140:171-6
Kourembanas, Stella (2002) Hypoxia and carbon monoxide in the vasculature. Antioxid Redox Signal 4:291-9
Minamino, T; Christou, H; Hsieh, C M et al. (2001) Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci U S A 98:8798-803
Minamino, T; Kourembanas, S (2001) Mechanisms of telomerase induction during vascular smooth muscle cell proliferation. Circ Res 89:237-43
Minamino, T; Mitsialis, S A; Kourembanas, S (2001) Hypoxia extends the life span of vascular smooth muscle cells through telomerase activation. Mol Cell Biol 21:3336-42
Van Marter, L J; Allred, E N; Leviton, A et al. (2001) Antenatal glucocorticoid treatment does not reduce chronic lung disease among surviving preterm infants. J Pediatr 138:198-204
Venihaki, M; Carrigan, A; Dikkes, P et al. (2000) Circadian rise in maternal glucocorticoid prevents pulmonary dysplasia in fetal mice with adrenal insufficiency. Proc Natl Acad Sci U S A 97:7336-41
Zhu, C; Bao, G; Wang, N (2000) Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu Rev Biomed Eng 2:189-226
Stamenovic, D; Wang, N (2000) Invited review: engineering approaches to cytoskeletal mechanics. J Appl Physiol 89:2085-90

Showing the most recent 10 out of 25 publications