The Neuroanatomy Core will provide both light and electron microscopic services to the Projects, including tissue staining, sectioning and imaging.
Ten aims i n three projects will utilize this Core facility. Projects 2( Rosenberg) and 3 (Saper) will use the Core for in situ hybridization histochemistry to localize mRNA for phosphodiesterases, adenosine receptors and glutamic acid decarboxylase in rat brain, and the latter also in human brain. Light microscopic immunocytochemical services will be used by Project 2, 3, and 4 to localize cholinergic neurons, as well as immunocytochemistry for neurons containing enkephalin, in some cases combined with retrograde tract tracing or in situ hybridization methods. Electron microscopic immunocytochemistry will be used by Project 4 to examine the chemical specificity of afferents to hypoglossal motor neurons. The centralization of these services in one laboratory will give the laboratories that do relative little neuroanatomy (Rosenberg and Greene) access to the technical proficiency of the Core laboratory and staff and will allow economy of scale in order and using reagents, isotopes and photographic emulsion.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center (P50)
Project #
5P50HL060292-02
Application #
6202618
Study Section
Project Start
1999-09-01
Project End
2000-08-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
2
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Harvard University
Department
Type
DUNS #
082359691
City
Boston
State
MA
Country
United States
Zip Code
02115
Zielinski, Mark R; Gerashchenko, Dmitry; Karpova, Svetlana A et al. (2017) The NLRP3 inflammasome modulates sleep and NREM sleep delta power induced by spontaneous wakefulness, sleep deprivation and lipopolysaccharide. Brain Behav Immun 62:137-150
Cori, Jennifer M; Thornton, Therese; O'Donoghue, Fergal J et al. (2017) Arousal-Induced Hypocapnia Does Not Reduce Genioglossus Activity in Obstructive Sleep Apnea. Sleep 40:
Chen, Michael C; Ferrari, Loris; Sacchet, Matthew D et al. (2015) Identification of a direct GABAergic pallidocortical pathway in rodents. Eur J Neurosci 41:748-59
Kim, Youngsoo; Elmenhorst, David; Weisshaupt, Angela et al. (2015) Chronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain. J Sleep Res 24:549-558
Zielinski, Mark R; Kim, Youngsoo; Karpova, Svetlana A et al. (2014) Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression. Neurosci Lett 580:27-31
Lim, Andrew S P; Ellison, Brian A; Wang, Joshua L et al. (2014) Sleep is related to neuron numbers in the ventrolateral preoptic/intermediate nucleus in older adults with and without Alzheimer's disease. Brain 137:2847-61
Zielinski, M R; Kim, Y; Karpova, S A et al. (2013) Sleep active cortical neurons expressing neuronal nitric oxide synthase are active after both acute sleep deprivation and chronic sleep restriction. Neuroscience 247:35-42
McCoy, John G; Christie, Michael A; Kim, Youngsoo et al. (2013) Chronic sleep restriction impairs spatial memory in rats. Neuroreport 24:91-5
Kim, Youngsoo; Chen, Lichao; McCarley, Robert W et al. (2013) Sleep allostasis in chronic sleep restriction: the role of the norepinephrine system. Brain Res 1531:9-16
McKenna, James Timothy; Christie, Michael A; Jeffrey, Brianne A et al. (2012) Chronic ramelteon treatment in a mouse model of Alzheimer's disease. Arch Ital Biol 150:5-14

Showing the most recent 10 out of 148 publications