Although much has been learned about the transmitter systems regulating behavioral state, we know little about the actual molecular mechanisms causing the brain to sleep and to wake up. This project is directed at defining these mechanisms. Cholinergic neurons of the laterodorsal tegrnental/pedunculopontine tegmental nucleus, which project to the basal forebrain (BF), as well as intrinsic cholinergic neurons of the BF, both contain nitric oxide synthase (NOS), and are active during waking. We found that: 1) NO evokes the release of adenosine from forebrain neurons in culture by a cGMP-independent mechanism; 2) A NOS inhibitor dialyzed into the BF suppressed NREM sleep following sleep deprivation in rats, and a nitric oxide donor dialyzed into the BF increased NREM sleep. These observations are the basis for one of two major hypothesis motivating this project, which is that NO, released during wakefulness in the BF by cholinergic neurons, is a major stimulus to the release of adenosine during waking, and thus is a key factor regulating the extracellular level of this important somnogen. In addition, we found that: 1) The high affinity cGMP degrading enzyme cyclic nucleotide phosphodiesterase (PDE) 9A is expressed in large neurons of the BF; 2) An inhibitor of cGMP degrading PDEs dialyzed into the BF increased NREM sleep. On the basis of these observations, we hypothesize that NO also has important effects relevant to the regulation of behavioral state that are mediated by the NO/cGMP signaling pathway, and are independent of the adenosine-releasing effects of NO.
The specific aims of this project are to: 1) Use mierodialysis with behavioral and electroeneephalographie monitoring to test for the role of NO in homeostatic sleep regulation in the rat using NOS inhibitors and NO donors. 2) Determine the anatomic and cellular localization of the components of the NO/cGMP signal transduction system (cGMP hydrolyzing cyclic nucleotide phosphodiesterases, soluble guanylyl cyclase, NO synthase, protein kinase G) in regions of the brain relevant for sleep/wake regulation. 3) Characterize the electrophysiological effects of NO on neurons of the BF and ventrolateral preoptic nucleus (VLPO) using a basal forebrain/preoptic area BF/POA) slice preparation.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center (P50)
Project #
2P50HL060292-06
Application #
6716897
Study Section
Project Start
2003-09-08
Project End
2008-08-31
Budget Start
2003-09-08
Budget End
2004-08-31
Support Year
6
Fiscal Year
2003
Total Cost
$226,300
Indirect Cost
Name
Harvard University
Department
Type
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Zielinski, Mark R; Gerashchenko, Dmitry; Karpova, Svetlana A et al. (2017) The NLRP3 inflammasome modulates sleep and NREM sleep delta power induced by spontaneous wakefulness, sleep deprivation and lipopolysaccharide. Brain Behav Immun 62:137-150
Cori, Jennifer M; Thornton, Therese; O'Donoghue, Fergal J et al. (2017) Arousal-Induced Hypocapnia Does Not Reduce Genioglossus Activity in Obstructive Sleep Apnea. Sleep 40:
Chen, Michael C; Ferrari, Loris; Sacchet, Matthew D et al. (2015) Identification of a direct GABAergic pallidocortical pathway in rodents. Eur J Neurosci 41:748-59
Kim, Youngsoo; Elmenhorst, David; Weisshaupt, Angela et al. (2015) Chronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain. J Sleep Res 24:549-558
Zielinski, Mark R; Kim, Youngsoo; Karpova, Svetlana A et al. (2014) Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression. Neurosci Lett 580:27-31
Lim, Andrew S P; Ellison, Brian A; Wang, Joshua L et al. (2014) Sleep is related to neuron numbers in the ventrolateral preoptic/intermediate nucleus in older adults with and without Alzheimer's disease. Brain 137:2847-61
Kim, Youngsoo; Chen, Lichao; McCarley, Robert W et al. (2013) Sleep allostasis in chronic sleep restriction: the role of the norepinephrine system. Brain Res 1531:9-16
Zielinski, M R; Kim, Y; Karpova, S A et al. (2013) Sleep active cortical neurons expressing neuronal nitric oxide synthase are active after both acute sleep deprivation and chronic sleep restriction. Neuroscience 247:35-42
McCoy, John G; Christie, Michael A; Kim, Youngsoo et al. (2013) Chronic sleep restriction impairs spatial memory in rats. Neuroreport 24:91-5
McKenna, James Timothy; Christie, Michael A; Jeffrey, Brianne A et al. (2012) Chronic ramelteon treatment in a mouse model of Alzheimer's disease. Arch Ital Biol 150:5-14

Showing the most recent 10 out of 148 publications