Identification of genes causing human cardiac disease provides insight into the molecular pathways involved in heart development. The investigators have recently identified Jagged1 (JAG1) as the disease gene causing Alagille syndrome, a genetic disorder associated with heart, liver, and several other anomalies. JAG1 is a ligand in the Notch signaling pathway, shown in multiple organisms to be involved in cell fate determination. Alagille syndrome is a dominant disorder, with extreme variability in the expression of phenotypic features. Some individuals with JAG1 mutations have only a single clinical feature, rather than the multi- system involvement characteristic of Alagille syndrome, which led the investigators to hypothesize that JAG1 mutations would be identified in patients with isolated heart disease. The preliminary data support this hypothesis, as the investigators have identified three patients with cardiac disease and JAG1 mutations who do not manifest the liver abnormalities associated with Alagille syndrome. The investigators will extend this work to study a cohort of patients to determine the frequency of JAG1 mutations associated with cardiac defects. In order to understand how JAG1 is involved in cardiovascular development, the investigators will analyze location and timing of JAG1 expression in the developing mouse embryo. The investigators will also address the mechanism by which mutations in JAG1 cause heart disease. In Drosophila, mutations in Notch ligands which cause truncated proteins similar to those predicted in Alagille syndrome patients, act in a dominant negative fashion. However, there is compelling data from human studies that the mechanism for the effect of JAG1 is haploinsufficiency. The investigators propose to overexpress the mutations seen in Alagille syndrome patients in the mouse embryo and determine their effect on early vascular development. The investigators further propose that other members of the Notch signaling pathway may be associated with cardiac abnormalities. The Notch ligand Delta has recently been mapped to 6q27, a region of the genome associated with cardiac disease in patients deleted for this region. The investigators will determine if Delta is the gene responsible for heart disease in these patients. If they are unable to show a role for Delta, they will use a positional cloning approach to identify other gene(s) associated with cardiac disease from 6q27. In summary, this work will provide an increased understanding of the role of JAG1 in normal and abnormal development of the heart, and lay the foundation for identifying additional genes contributing to cardiac disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center (P50)
Project #
5P50HL062177-03
Application #
6434091
Study Section
Project Start
2001-02-01
Project End
2001-12-31
Budget Start
Budget End
Support Year
3
Fiscal Year
2001
Total Cost
Indirect Cost
Name
Children's Hospital of Philadelphia
Department
Type
DUNS #
073757627
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Li, You; Yagi, Hisato; Onuoha, Ezenwa Obi et al. (2016) DNAH6 and Its Interactions with PCD Genes in Heterotaxy and Primary Ciliary Dyskinesia. PLoS Genet 12:e1005821
John, Anitha S; Rychik, Jack; Khan, Munziba et al. (2014) 22q11.2 deletion syndrome as a risk factor for aortic root dilation in tetralogy of Fallot. Cardiol Young 24:303-10
D'Alessandro, Lisa C A; Werner, Petra; Xie, Hongbo M et al. (2014) The prevalence of 16p12.1 microdeletion in patients with left-sided cardiac lesions. Congenit Heart Dis 9:83-6
D'Alessandro, Lisa C A; Latney, Brande C; Paluru, Prasuna C et al. (2013) The phenotypic spectrum of ZIC3 mutations includes isolated d-transposition of the great arteries and double outlet right ventricle. Am J Med Genet A 161A:792-802
Peyvandi, Shabnam; Lupo, Philip J; Garbarini, Jennifer et al. (2013) 22q11.2 deletions in patients with conotruncal defects: data from 1,610 consecutive cases. Pediatr Cardiol 34:1687-94
Penton, Andrea L; Leonard, Laura D; Spinner, Nancy B (2012) Notch signaling in human development and disease. Semin Cell Dev Biol 23:450-7
Bauer, Robert C; Laney, Ayanna O; Smith, Rosemarie et al. (2010) Jagged1 (JAG1) mutations in patients with tetralogy of Fallot or pulmonic stenosis. Hum Mutat 31:594-601
Goldmuntz, Elizabeth; Driscoll, Deborah A; Emanuel, Beverly S et al. (2009) Evaluation of potential modifiers of the cardiac phenotype in the 22q11.2 deletion syndrome. Birth Defects Res A Clin Mol Teratol 85:125-9
Tomita-Mitchell, A; Maslen, C L; Morris, C D et al. (2007) GATA4 sequence variants in patients with congenital heart disease. J Med Genet 44:779-83
Loomes, Kathleen M; Russo, Pierre; Ryan, Matthew et al. (2007) Bile duct proliferation in liver-specific Jag1 conditional knockout mice: effects of gene dosage. Hepatology 45:323-30

Showing the most recent 10 out of 34 publications