Hypercholesterolemia plays a critical enabling role in atherogenesis. However, despite the many links between LDL cholesterol levels and atherosclerotic risk, it is clear that factors alternative to LDL participate in the pathogenesis of cardiovascular disease, and substantial room exists for improvement in defining risk for the presence of, or accelerated progression of, atherosclerotic heart disease. Substantial evidence supports a complementary role for inflammation, in the form of specific oxidative pathways, in the pathogenesis of atherosclerosis. Through use of specific measures of oxidant stress in the setting of known risk-reducing therapies such as HMG-CoA reductase inhibitors (i.e. """"""""statins""""""""), we have recently shown strong correlations between distinct oxidative pathways, such as those involving nitric oxide and myeloperoxidase derived oxidants, and atherosclerotic disease in humans. Detailed assessments linking quantitative measures of atherosclerotic plaque volume/progression to rigorous measurements of distinct oxidative pathways are needed. Another process that likely participates in atherosclerosis is reverse cholesterol transport. The high-density lipoprotein (HDL) particle facilitates cholesterol efflux from cells. It also is believed to promote multiple anti-oxidant and anti-inflammatory activities. Neither direct demonstration of a clinical effect of isolated HDL elevation on plaque progression, nor in vivo assessments of HDL anti-oxidant and anti-inflammatory activities in subjects have been reported. In preliminary studies we provide the first direct experimental evidence in humans that isolated HDL elevations impact upon rates of atherosclerotic plaque progression / regression, as monitored by coronary intravascular ultrasound (IVUS). Intravenous infusions of a form of apolipoprotein (apo) A-I in subjects elicited significant regression of coronary artery plaque volume. The present proposal aims to extend upon our initial clinical and biochemical observations and systematically investigate molecular mechanisms of oxidant stress, reverse cholesterol transport, and newly identified interconnections between these pathways, that impact upon coronary artery atherosclerotic plaque progression/regression. We will achieve this with the following specific aims: (1) To test the hypothesis that genetic and biochemical determinants of specific oxidative pathways independently predict quantitative measures of coronary atherosclerotic plaque volume and progression, as monitored by serial coronary IVUS in patients; and (2) To test the hypotheses that site-specific oxidation of apoA-I modulates reverse cholesterol transport functions of HDL, is associated with increased cardiovascular risks, and conversely, that isolated HDL elevations promote systemic antioxidant effects through specific pathways.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center (P50)
Project #
1P50HL077107-01
Application #
6892787
Study Section
Special Emphasis Panel (ZHL1-CSR-S (M1))
Project Start
2005-01-01
Project End
2009-12-31
Budget Start
2005-01-01
Budget End
2005-12-31
Support Year
1
Fiscal Year
2005
Total Cost
$504,869
Indirect Cost
Name
Cleveland Clinic Lerner
Department
Type
DUNS #
135781701
City
Cleveland
State
OH
Country
United States
Zip Code
44195
Xu, Huichun; Dorn 2nd, Gerald W; Shetty, Amol et al. (2018) A Genome-Wide Association Study of Idiopathic Dilated Cardiomyopathy in African Americans. J Pers Med 8:
Kim, Dae Joong; Christofidou, Elena D; Keene, Douglas R et al. (2015) Intermolecular interactions of thrombospondins drive their accumulation in extracellular matrix. Mol Biol Cell 26:2640-54
Lauer, Michael S (2014) Personal reflections on big science, small science, or the right mix. Circ Res 114:1080-2
Gao, Hanxiang; Li, Lin; Rao, Shaoqi et al. (2014) Genome-wide linkage scan identifies two novel genetic loci for coronary artery disease: in GeneQuest families. PLoS One 9:e113935
Sossey-Alaoui, Khalid (2013) Surfing the big WAVE: Insights into the role of WAVE3 as a driving force in cancer progression and metastasis. Semin Cell Dev Biol 24:287-97
Tang, W H Wilson; Shrestha, Kevin; Tong, Wilson et al. (2013) Nitric oxide bioavailability and adiponectin production in chronic systolic heart failure: relation to severity of cardiac dysfunction. Transl Res 162:26-33
Stenina-Adognravi, Olga (2013) Thrombospondins: old players, new games. Curr Opin Lipidol 24:401-9
Tang, W H Wilson; Shrestha, Kevin; Wang, Zeneng et al. (2013) Diminished global arginine bioavailability as a metabolic defect in chronic systolic heart failure. J Card Fail 19:87-93
Timur, A A; Murugesan, G; Zhang, L et al. (2012) P2RY1 and P2RY12 polymorphisms and on-aspirin platelet reactivity in patients with coronary artery disease. Int J Lab Hematol 34:473-83
Bhattacharyya, Sanghamitra; Sul, Kristina; Krukovets, Irene et al. (2012) Novel tissue-specific mechanism of regulation of angiogenesis and cancer growth in response to hyperglycemia. J Am Heart Assoc 1:e005967

Showing the most recent 10 out of 120 publications