Core A (Administrative Core), led by the Program's Director, Paul M. Hassoun, MD, and Co-Director, Rubin M. Tuder, will provide essential administrative and secretarial support and ensure overall direction and organization of the entire Program. In addition, this Core will provide accounting support that will ensure appropriate fiscal and scientific oversight, monitoring and compliance with federal and institutional grant management regulations, the latter through several formal mechanisms. The objectives of the Administrative core are (i) centralization of all administrative actions and financial recording keeping, (ii) to assist with statistical and data processing support for the projects (iii)to prepare scientific and financial reports as required by the university and the NHLBI, (iv) to ensure that the SCCOR research meets the highest standards through periodic review by the internal and external review panels, (v) to facilitate the use of common resources, (vi)to foster exchange of scientific information and ideas, and (viii) provide the projects and cores with a review of all expenditures on a monthly basis and deal with University Accounting and Grants offices concerning grant budgets. Core A will coordinate the inter-project, and inter-departmental, collaborative arrangements and evolve new arrangements as deemed necessary for the scientific progress of the SCCOR project as a whole. Core personnel will orchestrate monthly meetings of the project leaders that will be held to discuss scientific and administrative matters. Core A will organize regular research seminars on Thursday mornings which will allow SCCOR investigators to present their work in progress to other researchers. Coordinated administrative services will ensure optimal purchasing practices, facilitate communications, and promote scientific interaction.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center (P50)
Project #
5P50HL084946-04
Application #
8013845
Study Section
Special Emphasis Panel (ZHL1)
Project Start
2010-01-01
Project End
2011-12-31
Budget Start
2010-01-01
Budget End
2010-12-31
Support Year
4
Fiscal Year
2010
Total Cost
$117,150
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Hsu, Steven; Kokkonen-Simon, Kristen M; Kirk, Jonathan A et al. (2018) Right Ventricular Myofilament Functional Differences in Humans With Systemic Sclerosis-Associated Versus Idiopathic Pulmonary Arterial Hypertension. Circulation 137:2360-2370
Mercurio, Valentina; Mukherjee, Monica; Tedford, Ryan J et al. (2018) Improvement in Right Ventricular Strain with Ambrisentan and Tadalafil Upfront Therapy in Scleroderma-associated Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 197:388-391
Mecoli, Christopher A; Shah, Ami A; Boin, Francesco et al. (2018) Vascular complications in systemic sclerosis: a prospective cohort study. Clin Rheumatol 37:2429-2437
Yu, Bing; Pulit, Sara L; Hwang, Shih-Jen et al. (2016) Rare Exome Sequence Variants in CLCN6 Reduce Blood Pressure Levels and Hypertension Risk. Circ Cardiovasc Genet 9:64-70
Gao, Li; Emond, Mary J; Louie, Tin et al. (2016) Identification of Rare Variants in ATP8B4 as a Risk Factor for Systemic Sclerosis by Whole-Exome Sequencing. Arthritis Rheumatol 68:191-200
Ohyama, Yoshiaki; Ambale-Venkatesh, Bharath; Chamera, Elzbieta et al. (2015) Comparison of strain measurement from multimodality tissue tracking with strain-encoding MRI and harmonic phase MRI in pulmonary hypertension. Int J Cardiol 182:342-348
Auer, Paul L; Nalls, Mike; Meschia, James F et al. (2015) Rare and Coding Region Genetic Variants Associated With Risk of Ischemic Stroke: The NHLBI Exome Sequence Project. JAMA Neurol 72:781-8
Parker, Sarah J; Raedschelders, Koen; Van Eyk, Jennifer E (2015) Emerging proteomic technologies for elucidating context-dependent cellular signaling events: A big challenge of tiny proportions. Proteomics 15:1486-502
Damico, Rachel; Kolb, Todd M; Valera, Lidenys et al. (2015) Serum endostatin is a genetically determined predictor of survival in pulmonary arterial hypertension. Am J Respir Crit Care Med 191:208-18
Fan, Chunling; Meuchel, Lucas W; Su, Qingning et al. (2015) Resistin-Like Molecule ? in Allergen-Induced Pulmonary Vascular Remodeling. Am J Respir Cell Mol Biol 53:303-13

Showing the most recent 10 out of 108 publications