Tobacco smoke has a devastating impact on health, particularly on lung health. It is the most common cause of chronic obstructive lung disease (COPD) and lung cancer. It also has synergistic effects on numerous other lung diseases, including interstitial lung disease and pneumonia. Most mouse models of tobacco smoke related lung disease expose mouse strains to tobacco smoke. This model usually results in mild-to-moderate emphysema, but little or no evidence ofthe chronic bronchitis, which is a large component of COPD in humans.
Our aim i s to establish a model of tobacco smoke-induced lung injury that mimics that found in humans. This work will address the FDA CPT research interest, Adverse Health Consequences. The goal ofthis project is to determine what animal models can be validated to establish standard toxicity changes and what magnitude observed within in vivo assays correlates with change in human health outcome (point 31). As described in Project 1, smoke exposure leads to decreased activity of CFTR, resulting in absorption of water from airway liquid, dehydration of mucus, and poor mucociliary clearance. Transgenic mice overexpressing Scnnib, the gene which codes forthe epithelial Na* chanriel subunit (pENaC), in the epithelial cells ofthe airways mimic this aspect of tobacco smoke, showing mucus cell metaplasia, mucus hypersecretion and obstruction, neutrophilic inflammation, large foamy macrophages, and increased numbers of lymphocytes in both the lumen and the walls ofthe ainways. These mice also show evidence of an MMP-12-dependent emphysematous component to the injury. Thus, the lungs of these mice develop pathology that mimics changes found in COPD patients, highlighting the striking effects of airway dehydration. However, these mice are missing all other effects of tobacco smoke, which are likely to be many due to numerous components of tobacco smoke. We are modeling tobacco smoke exposure in humans by exposing Scnn1b-tg mice to prolonged (6 month) tobacco smoke exposure. Our studies to date suggest that this model mimics the human injury more closely than mouse models to date. In particular, gene expression analysis suggests that smoke exposure in Scnnlb-ig mice results in more similarities to human disease in both detoxification pathways and in immune regulatory pathways. Other similarities to date include changes in mucins within the airways and the presence of large numbers of vesicular exosomes. Thus, we propose to test the hypothesis that smoke exposure in Scnn1b-tg mice is an excellent model of human disease and can be used more effectively than either wild type (WT) mice or other mouse models of COPD to study particular components of smoke or to compare tobacco products or substitutes.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Punturieri, Antonello
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Chapel Hill
United States
Zip Code
Keating, James E; Minges, John T; Randell, Scott H et al. (2018) Paper Spray Mass Spectrometry for High-Throughput Quantification of Nicotine and Cotinine. Anal Methods 10:46-50
Reidel, Boris; Radicioni, Giorgia; Clapp, Phillip W et al. (2018) E-Cigarette Use Causes a Unique Innate Immune Response in the Lung, Involving Increased Neutrophilic Activation and Altered Mucin Secretion. Am J Respir Crit Care Med 197:492-501
Ghosh, Arunava; Coakley, Raymond C; Mascenik, Teresa et al. (2018) Chronic E-Cigarette Exposure Alters the Human Bronchial Epithelial Proteome. Am J Respir Crit Care Med 198:67-76
Rebuli, Meghan E; Speen, Adam M; Clapp, Phillip W et al. (2017) Novel applications for a noninvasive sampling method of the nasal mucosa. Am J Physiol Lung Cell Mol Physiol 312:L288-L296
Esther Jr, Charles R; Hill, David B; Button, Brian et al. (2017) Sialic acid-to-urea ratio as a measure of airway surface hydration. Am J Physiol Lung Cell Mol Physiol 312:L398-L404
Kesimer, Mehmet; Ford, Amina A; Ceppe, Agathe et al. (2017) Airway Mucin Concentration as a Marker of Chronic Bronchitis. N Engl J Med 377:911-922
Davis, Eric S; Sassano, M Flori; Goodell, Henry et al. (2017) E-Liquid Autofluorescence can be used as a Marker of Vaping Deposition and Third-Hand Vape Exposure. Sci Rep 7:7459
Clapp, Phillip W; Pawlak, Erica A; Lackey, Justin T et al. (2017) Flavored e-cigarette liquids and cinnamaldehyde impair respiratory innate immune cell function. Am J Physiol Lung Cell Mol Physiol 313:L278-L292
Clapp, Phillip W; Jaspers, Ilona (2017) Electronic Cigarettes: Their Constituents and Potential Links to Asthma. Curr Allergy Asthma Rep 17:79
Rowell, Temperance R; Reeber, Steven L; Lee, Shernita L et al. (2017) Flavored e-cigarette liquids reduce proliferation and viability in the CALU3 airway epithelial cell line. Am J Physiol Lung Cell Mol Physiol 313:L52-L66

Showing the most recent 10 out of 20 publications