This project will study the optimization of speeded decisions, and the control and monitoring mechanisms that serve this optimization by balancing performance costs and benefits. These lines of work will be pursued under two specific aims. First, we will build on theoretical work from the previous period, which used the drift diffusion model and neural network modeling to produce detailed predictions about behavior and the dynamics of neural mechanisms underlying control. Here, we aim to test these predictions using behavioral, fMRI, and electrophysiological techniques, in coordination with continued modeling and analysis work in Project 6. These studies will address two-alternative forced choice tasks in which speeded decisions must be made between a correct (rewarded) and incorrect (unrewarded) alternative, tasks that will also be explored within human developmental and non-human primate populations in Projects 2, 4, and 5. In a second, complementary line of work, we will extend our investigation to decisions that require a more graded evaluation of the relative costs and benefits of alternative courses of action. Many decisions do not involve a simple choice between correct vs. incorrect (rewarded vs. unrewarded) alternatives, but rather require an evaluation of the relative costs and benefits of the options. We will use behavioral, imaging, electrophysiological, and pupillometric methods to characterize the neural mechanisms involved in evaluating costs and benefits in such circumstances, and how these evaluations are combined to compute utility and control decision making within and between tasks. Experiments in this second line of studies will parallel developmental studies in Project 4 and neurophysiological studies in Project 5 examining the decision between a well-defined alternative versus the opportunity to explore other alternatives.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
5P50MH062196-10
Application #
7939653
Study Section
Special Emphasis Panel (ZMH1)
Project Start
Project End
Budget Start
2009-09-01
Budget End
2010-08-31
Support Year
10
Fiscal Year
2009
Total Cost
$398,923
Indirect Cost
Name
Princeton University
Department
Type
DUNS #
002484665
City
Princeton
State
NJ
Country
United States
Zip Code
08544
Aston-Jones, G; Waterhouse, B (2016) Locus coeruleus: From global projection system to adaptive regulation of behavior. Brain Res 1645:75-8
Casey, B J (2015) Beyond simple models of self-control to circuit-based accounts of adolescent behavior. Annu Rev Psychol 66:295-319
Freestone, David M; Balc?, Fuat; Simen, Patrick et al. (2015) Optimal response rates in humans and rats. J Exp Psychol Anim Learn Cogn 41:39-51
Schwemmer, Michael A; Feng, Samuel F; Holmes, Philip J et al. (2015) A Multi-Area Stochastic Model for a Covert Visual Search Task. PLoS One 10:e0136097
Karmiloff-Smith, Annette; Casey, B J; Massand, Esha et al. (2014) Environmental and Genetic Influences on Neurocognitive Development: The Importance of Multiple Methodologies and Time-Dependent Intervention. Clin Psychol Sci 2:628-637
Balc?, Fuat; Simen, Patrick (2014) Decision processes in temporal discrimination. Acta Psychol (Amst) 149:157-68
Kool, Wouter; Botvinick, Matthew (2014) A labor/leisure tradeoff in cognitive control. J Exp Psychol Gen 143:131-41
van Vugt, Marieke K; Simen, Patrick; Nystrom, Leigh et al. (2014) Lateralized readiness potentials reveal properties of a neural mechanism for implementing a decision threshold. PLoS One 9:e90943
Holmes, Philip; Cohen, Jonathan D (2014) Optimality and some of its discontents: successes and shortcomings of existing models for binary decisions. Top Cogn Sci 6:258-78
Kalwani, Rishi M; Joshi, Siddhartha; Gold, Joshua I (2014) Phasic activation of individual neurons in the locus ceruleus/subceruleus complex of monkeys reflects rewarded decisions to go but not stop. J Neurosci 34:13656-69

Showing the most recent 10 out of 174 publications